from argparse import ArgumentParser import numpy as np import tqdm import torch import re from torch import bfloat16 from transformers import AutoModelForCausalLM, AutoTokenizer import json def creat_prompt(model_id, tokenizer=None, question=None, answer=None, pred=None,): messages = [ { "role": "system", "content": "You are an intelligent chatbot designed for evaluating the correctness of generative outputs for question-answer pairs. " "Your task is to compare the predicted answer with the correct answer and determine if they match meaningfully. Here's how you can accomplish the task:\n" "------\n" "##INSTRUCTIONS:\n" "- Focus on the meaningful match between the predicted answer and the correct answer.\n" "- Consider synonyms or paraphrases as valid matches.\n" "- Evaluate the correctness of the prediction compared to the answer." }, { "role": "user", "content": "Please evaluate the following question-answer pair:\n\n" f"Question: {question.capitalize()}\n" f"Correct Answer: {answer.lower()}\n" f"Predicted Answer: {pred.lower()}\n\n" "Evaluate if the answer is correct with yes/no and assign a correctness score between 0 and 5, where 0 indicates incorrect answer, and 5 signifies the highest meaningful match. " "Please generate the response in the form of a Python dictionary string with keys 'pred' and 'score', where value of 'pred' is a string of 'yes' or 'no' and value of 'score' is in INTEGER, not STRING. " "DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. " "For example, your response should look like this: {'pred': 'no', 'score': 0}." } ] if 'mistralai' in model_id: prompt = f'[INST] {messages[0]["content"].strip()}\n\n{messages[1]["content"].strip()} [/INST]' elif 'NousResearch' in model_id: prompt = tokenizer.apply_chat_template(messages, tokenize=False) prompt = prompt + '<|im_start|>assistant' else: raise NotImplementedError return prompt def calculate_ins_level_score(results): acc = 0 ins_num = 0 for cat_results in results.values(): acc += cat_results['avg_score'] * cat_results['num_example'] ins_num += cat_results['num_example'] return 0 return acc / ins_num def LLM_eval(model_id, model, tokenizer, batch_size, samples, cuda=True): steps = int(np.ceil(len(samples) / batch_size)) evals = [] for step in tqdm.tqdm(range(steps)): prompts = [] for item in samples[step * batch_size: (step + 1) * batch_size]: question = item['question'].replace('', '').strip() question = question.split('Context:')[0].strip() # for ScienceQA answer = item['answer'] pred = item['parsed_pred'] prompt = creat_prompt(model_id, tokenizer, question, answer, pred) prompts.append(prompt) inputs = tokenizer(prompts, return_tensors="pt", padding=True) # feed inputs of a batch if cuda: inputs = {k: v.cuda() for k, v in inputs.items()} with torch.inference_mode(): output_ids = model.generate( **inputs, use_cache=True, max_new_tokens=20, pad_token_id=tokenizer.eos_token_id, ) outputs = tokenizer.batch_decode(output_ids[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True) # decode outputs of a batch evals.extend(outputs) judge_dict = dict() pred_correct = 0 score_sum = 0 for sample_data, sample_eval in zip(samples, evals): try: sample_eval = re.match(r".*(\{.*?\}).*", sample_eval, re.S).group(1) sample_eval = sample_eval.replace("'", '"') sample_eval = json.loads(sample_eval) pred = sample_eval['pred'] sample_score = sample_eval['score'] if pred == 'yes': judge_dict[sample_data['id']] = {'pred': 'Correct', 'score': sample_score} pred_correct += 1 else: judge_dict[sample_data['id']] = {'pred': 'Wrong', 'score': sample_score} score_sum += sample_score except: judge_dict[sample_data['id']] = {'pred': 'Wrong', 'score': 0} if len(samples) == 0: return {'acc': 0, 'avg_score': 0} return judge_dict, {'acc': pred_correct / len(samples), 'avg_score': score_sum / len(samples)} def run_mixtral_eval(): tokenizer = AutoTokenizer.from_pretrained(args.model_id)