import json import os import datasets _CITATION = """\ @inproceedings{Kumar2022IndicNLGSM, title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages}, author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar}, year={2022}, url = "https://arxiv.org/abs/2203.05437" } """ _DESCRIPTION = """\ This is the Question Generation dataset released as part of IndicNLG Suite. Each example has five fields: id, squad_id, answer, context and question. We create this dataset in eleven languages including as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. This is a translated data. The examples in each language are exactly similar but in different languages. The number of examples in each language is 98,027. """ _HOMEPAGE = "https://indicnlp.ai4bharat.org/indicnlg-suite" _LICENSE = "Creative Commons Attribution-NonCommercial 4.0 International Public License" _URL = "https://huggingface.co/datasets/ai4bharat/IndicQuestionGeneration/resolve/main/data/{}_QuestionGeneration_v{}.zip" _LANGUAGES = [ "as", "bn", "gu", "hi", "kn", "ml", "mr", "or", "pa", "ta", "te" ] class QuestionGeneration(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="{}".format(lang), version=datasets.Version("1.0.0") ) for lang in _LANGUAGES ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "squad_id": datasets.Value("string"), "answer": datasets.Value("string"), "context": datasets.Value("string"), "question": datasets.Value("string") } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE, version=self.VERSION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" lang = str(self.config.name) url = _URL.format(lang, self.VERSION.version_str[:-2]) data_dir = dl_manager.download_and_extract(url) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join(data_dir, lang + "_train" + ".jsonl"), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join(data_dir, lang + "_test" + ".jsonl"), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": os.path.join(data_dir, lang + "_val" + ".jsonl"), }, ), ] def _generate_examples(self, filepath): """Yields examples as (key, example) tuples.""" with open(filepath, encoding="utf-8") as f: for idx_, row in enumerate(f): data = json.loads(row) yield idx_, { "id": data["id"], "squad_id": data["squad_id"], "answer": data["answer"], "context": data["context"], "question": data["question"] }