# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ROPES dataset. Code is heavily inspired from https://github.com/huggingface/datasets/blob/master/datasets/squad/squad.py""" import json import datasets _CITATION = """\ @inproceedings{Lin2019ReasoningOP, title={Reasoning Over Paragraph Effects in Situations}, author={Kevin Lin and Oyvind Tafjord and Peter Clark and Matt Gardner}, booktitle={MRQA@EMNLP}, year={2019} } """ _DESCRIPTION = """\ ROPES (Reasoning Over Paragraph Effects in Situations) is a QA dataset which tests a system's ability to apply knowledge from a passage of text to a new situation. A system is presented a background passage containing a causal or qualitative relation(s) (e.g., "animal pollinators increase efficiency of fertilization in flowers"), a novel situation that uses this background, and questions that require reasoning about effects of the relationships in the background passage in the background of the situation. """ _LICENSE = "CC BY 4.0" _URLs = { "train+dev": "https://ropes-dataset.s3-us-west-2.amazonaws.com/train_and_dev/ropes-train-dev-v1.0.tar.gz", "test": "https://ropes-dataset.s3-us-west-2.amazonaws.com/test/ropes-test-questions-v1.0.tar.gz", } class Ropes(datasets.GeneratorBasedBuilder): """ROPES datset: testing a system's ability to apply knowledge from a passage of text to a new situation..""" VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="plain_text", description="Plain text", version=VERSION), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "background": datasets.Value("string"), "situation": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), } ), } ), supervised_keys=None, homepage="https://allenai.org/data/ropes", license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" archives = dl_manager.download(_URLs) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": "/".join(["ropes-train-dev-v1.0", "train-v1.0.json"]), "split": "train", "files": dl_manager.iter_archive(archives["train+dev"]), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": "/".join(["ropes-test-questions-v1.0", "test-1.0.json"]), "split": "test", "files": dl_manager.iter_archive(archives["test"]), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": "/".join(["ropes-train-dev-v1.0", "dev-v1.0.json"]), "split": "dev", "files": dl_manager.iter_archive(archives["train+dev"]), }, ), ] def _generate_examples(self, filepath, split, files): """Yields examples.""" for path, f in files: if path == filepath: ropes = json.loads(f.read().decode("utf-8")) for article in ropes["data"]: for paragraph in article["paragraphs"]: background = paragraph["background"].strip() situation = paragraph["situation"].strip() for qa in paragraph["qas"]: question = qa["question"].strip() id_ = qa["id"] answers = [] if split == "test" else [answer["text"].strip() for answer in qa["answers"]] yield id_, { "background": background, "situation": situation, "question": question, "id": id_, "answers": { "text": answers, }, } break