--- license: other pretty_name: TabLib size_categories: - 100M- Accessing the full TabLib dataset requires permission from Approximate Labs. To request access, please provide the following details and Approximate Labs will process your request as soon as possible. extra_gated_fields: Full Name: text Email: text Country: text Organization: text What do you intend to do with this dataset?: text I agree to abide by the license requirements of the data contained in TabLib: checkbox --- [![](https://dcbadge.vercel.app/api/server/kW9nBQErGe?compact=true&style=flat)](https://discord.gg/kW9nBQErGe) # TabLib A minimally-preprocessed dataset of 627M tables (69 TiB) extracted from HTML, PDF, CSV, TSV, Excel, and SQLite files from GitHub and Common Crawl. This includes 867B tokens of "context metadata": each table includes provenance information and table context such as filename, text before/after, HTML metadata, etc. A smaller 0.1% sample of this dataset can be found [here](https://huggingface.co/datasets/approximatelabs/tablib-v1-sample). For more information, read the [paper](https://arxiv.org/abs/2310.07875) & [announcement blog](https://approximatelabs.com/blog/tablib). # Dataset Details ## Sources * **GitHub**: nearly all public GitHub repositories * **Common Crawl**: the `CC-MAIN-2023-23` crawl ## Reading Tables Tables are stored as serialized Arrow bytes in the `arrow_bytes` column. To read these, you will need to deserialize the bytes: ```python import datasets import pyarrow as pa # load a single file of the dataset ds = datasets.load_dataset( 'approximatelabs/tablib-v1-full', data_files='tablib/job=github_000005/batch=000001/part=000001/manifest.parquet', token='...', ) df = ds['train'].to_pandas() tables = [pa.RecordBatchStreamReader(b).read_all() for b in df['arrow_bytes']] ``` ## Licensing This dataset is intended for research use only. For specific licensing information, refer to the license of the specific datum being used. # Contact If you have any questions, comments, or concerns about licensing, pii, etc. please contact using [this form](https://forms.gle/C74VTWP7L78QDVR67). # Approximate Labs TabLib is a project from Approximate Labs. Find us on [Twitter](https://twitter.com/approximatelabs), [Github](https://github.com/approximatelabs), [Linkedin](https://www.linkedin.com/company/approximate-labs), and [Discord](https://discord.gg/kW9nBQErGe). # Citations If you use TabLib for any of your research, please cite the TabLib paper: ``` @misc{eggert2023tablib, title={TabLib: A Dataset of 627M Tables with Context}, author={Gus Eggert and Kevin Huo and Mike Biven and Justin Waugh}, year={2023}, eprint={2310.07875}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```