--- language: - en license: - mit --- # ADT Dataset ## Dataset Description This dataset contains Aria Digital Twin (ADT) sequences with various sensor data and annotations, including 2D/3D bounding boxes, trajectories, eye gaze data, and VRS recordings. ## Quick Start ```python from adt_dataset_loader import ADTDatasetLoader # Load entire dataset loader = ADTDatasetLoader("ariakang/ADT-test") # Load specific sequence loader = ADTDatasetLoader("ariakang/ADT-test", sequence_name="Apartment_release_clean_seq131_M1292") ``` ## Installation ```bash # Install required packages pip install datasets pandas ``` ## Dataset Structure Each sequence contains: - VRS Files: - video.vrs - synthetic_video.vrs - segmentations.vrs - depth_images.vrs - CSV Data: - 2D/3D bounding boxes - Aria device trajectories - Eye gaze data - Scene objects - JSON Data: - Instance annotations - Metadata - MPS Data: - Eye gaze processing - SLAM results ## Flexible Loading Options ### 1. Load Entire Dataset ```python # Initialize loader with all sequences loader = ADTDatasetLoader("ariakang/ADT-test") # See available sequences and data types available_files = loader.get_available_files() print("Available files:", available_files) # Load all data types bbox_2d = loader.load_2d_bounding_boxes() bbox_3d = loader.load_3d_bounding_boxes() trajectory = loader.load_aria_trajectory() eyegaze = loader.load_eyegaze() metadata = loader.load_metadata() slam_data = loader.load_mps_slam() ``` ### 2. Load Specific Sequences ```python # Load a specific sequence loader = ADTDatasetLoader( "ariakang/ADT-test", sequence_name="Apartment_release_clean_seq131_M1292" ) # Load data from this sequence bbox_2d = loader.load_2d_bounding_boxes() trajectory = loader.load_aria_trajectory() ``` ### 3. Load Selected Data Types ```python # Initialize loader for specific sequence loader = ADTDatasetLoader("ariakang/ADT-test", "Apartment_release_clean_seq131_M1292") # Load only 2D bounding boxes and VRS info bbox_2d = loader.load_2d_bounding_boxes() vrs_info = loader.get_vrs_files_info() # Get paths to specific VRS files video_vrs = [f for f in vrs_info if f['filename'] == 'video.vrs'][0] print(f"Video VRS path: {video_vrs['path']}") # Load only SLAM data slam_data = loader.load_mps_slam() closed_loop = slam_data['closed_loop'] # Get specific SLAM component ``` ## Available Data Types and Methods ### Main Data Types ```python # Bounding Boxes and Trajectories bbox_2d = loader.load_2d_bounding_boxes() bbox_3d = loader.load_3d_bounding_boxes() trajectory = loader.load_aria_trajectory() # Eye Gaze and Scene Data eyegaze = loader.load_eyegaze() scene_objects = loader.load_scene_objects() # Metadata and Instances metadata = loader.load_metadata() instances = loader.load_instances() # MPS Data eye_gaze_data = loader.load_mps_eye_gaze() # Returns dict with 'general' and 'summary' slam_data = loader.load_mps_slam() # Returns dict with various SLAM components ``` ### VRS Files ```python # Get VRS file information vrs_info = loader.get_vrs_files_info() # Example: Access specific VRS file info for vrs_file in vrs_info: print(f"File: {vrs_file['filename']}") print(f"Path: {vrs_file['path']}") print(f"Size: {vrs_file['size_bytes'] / 1024 / 1024:.2f} MB") ``` ### Custom Loading ```python # Load any file by name data = loader.load_file_by_name("your_file_name.csv") ``` ## Data Format Examples ### 2D Bounding Boxes ```python bbox_2d = loader.load_2d_bounding_boxes() print(bbox_2d.columns) # Columns: ['object_uid', 'timestamp[ns]', 'x_min[pixel]', 'x_max[pixel]', 'y_min[pixel]', 'y_max[pixel]'] ``` ### Aria Trajectory ```python trajectory = loader.load_aria_trajectory() print(trajectory.columns) # Columns: ['timestamp[ns]', 'x', 'y', 'z', 'qx', 'qy', 'qz', 'qw'] ``` ### MPS SLAM Data ```python slam_data = loader.load_mps_slam() # Components: # - closed_loop: DataFrame with closed-loop trajectory # - open_loop: DataFrame with open-loop trajectory # - calibration: Calibration parameters ``` ## Error Handling ```python try: data = loader.load_file_by_name("non_existent_file.csv") except ValueError as e: print(f"Error: {e}") ``` ## Notes - All CSV files are loaded as pandas DataFrames - JSON/JSONL files are loaded as Python dictionaries/lists - VRS files are not loaded into memory, only their metadata and paths are provided - Use `get_available_files()` to see all available data in your sequence ## Repository Structure VRS files are stored in sequence-specific folders: `sequences/{sequence_name}/vrs_files/`