import os import re import datasets import requests _DATA_URLS = ["https://sprogtek-ressources.digst.govcloud.dk/nota/Inspiration%202016%20-%202021/", "https://sprogtek-ressources.digst.govcloud.dk/nota/Inspiration%202008%20-%202016/", "https://sprogtek-ressources.digst.govcloud.dk/nota/Radio-TV%20program%202007%20-%202012/", "https://sprogtek-ressources.digst.govcloud.dk/nota/Radio-TV%20Program%202013%20-%202015/", "https://sprogtek-ressources.digst.govcloud.dk/nota/Radio-TV%20Program%202016%20-%202018/", "https://sprogtek-ressources.digst.govcloud.dk/nota/Radio-TV%20Program%202019%20-%202022/" ] _DESCRIPTION = """\ Nota lyd- og tekstdata Datasættet indeholder både tekst- og taledata fra udvalgte dele af Nota's lydbogsbiblotek. Datasættet består af over 500 timers oplæsninger og medfølgende transkriptioner på dansk. Al lyddata er i .wav-format, mens tekstdata er i .txt-format. I data indgår indlæsninger af Notas eget blad "Inspiration" og "Radio/TV", som er udgivet i perioden 2007 til 2022. Nota krediteres for arbejdet med at strukturere data, således at tekst og lyd stemmer overens. Nota er en institution under Kulturministeriet, der gør trykte tekster tilgængelige i digitale formater til personer med synshandicap og læsevanskeligheder, fx via produktion af lydbøger og oplæsning af aviser, magasiner, mv. """ _HOMEPAGE = "https://sprogteknologi.dk/dataset/notalyd-ogtekstdata" _LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/" def extract_file_links(): """ Extracts the web locations of the zip files containing the data :return: List of web urls """ download_paths = [] download_files_regex = re.compile("") for download_root in _DATA_URLS: r = requests.get(download_root) all_files = download_files_regex.findall(str(r.content)) # We ignore Parent and Readme files all_files_filtered = filter(lambda x: x != "Readme.txt" and x != "/nota/", all_files) for download_file in all_files_filtered: # Empty file if "INSL20210003.zip" in download_file: continue # Because of wget behaviour, we have to replace correct %20 with space full_download_path = download_root + download_file full_download_path = full_download_path.replace("%20", " ") download_paths.append(full_download_path) return download_paths class NotaDanishSoundAndTextDataset(datasets.GeneratorBasedBuilder): DEFAULT_CONFIG_NAME = "all" def _info(self): features = datasets.Features( { "audio": datasets.Audio(sampling_rate=44_100), "sentence": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, ) def _split_generators(self, dl_manager): download_urls = extract_file_links() dl_path = dl_manager.download_and_extract(download_urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "dl_path": dl_path, }, ) ] @staticmethod def _extract_transcript(file_path): with open(file_path, "r", encoding="utf-8") as f: data = f.read() return data def _generate_examples(self, dl_path): key = 0 transcripts = {} for parent_directory in dl_path: parent_directory_path = os.listdir(os.path.join(dl_path, parent_directory)) for sub_directory in parent_directory_path: data_directory_path = os.path.join(dl_path, parent_directory, sub_directory) data_files = os.listdir(data_directory_path) for data_file in data_files: file_type = data_file[-3:] file_id = data_file[:-4] if file_id not in transcripts: transcripts[file_id] = {} if file_type == "wav": transcripts[file_id]["audio_path"] = os.path.join(data_directory_path, data_file) elif file_type == "txt": transcripts[file_id]["sentence"] = self._extract_transcript( os.path.join(data_directory_path, data_file)) for sample_id, info in transcripts.items(): audio = {"path": info["audio_path"]} yield key, {"audio": audio, "sentence": info["sentence"]} key += 1 transcripts = {}