""" This code is licensed under CC-BY-4.0 from the original work by shunk031. The code is adapted from https://huggingface.co/datasets/shunk031/JGLUE/blob/main/JGLUE.py with minor modifications to the code structure. This codebase provides pre-processing functionality for the MARC-ja dataset in the Japanese GLUE benchmark. The original code can be found at https://github.com/yahoojapan/JGLUE/blob/main/preprocess/marc-ja/scripts/marc-ja.py. """ import random import warnings from typing import Dict, List, Optional, Union import string import datasets as ds import pandas as pd class MarcJaConfig(ds.BuilderConfig): def __init__( self, name: str = "MARC-ja", is_han_to_zen: bool = False, max_instance_num: Optional[int] = None, max_char_length: int = 500, remove_netural: bool = True, train_ratio: float = 0.94, val_ratio: float = 0.03, test_ratio: float = 0.03, output_testset: bool = False, filter_review_id_list_valid: bool = True, label_conv_review_id_list_valid: bool = True, version: Optional[Union[ds.utils.Version, str]] = ds.utils.Version("0.0.0"), data_dir: Optional[str] = None, data_files: Optional[ds.data_files.DataFilesDict] = None, description: Optional[str] = None, ) -> None: super().__init__( name=name, version=version, data_dir=data_dir, data_files=data_files, description=description, ) if train_ratio + val_ratio + test_ratio != 1.0: raise ValueError( "train_ratio + val_ratio + test_ratio should be 1.0, " f"but got {train_ratio} + {val_ratio} + {test_ratio} = {train_ratio + val_ratio + test_ratio}" ) self.train_ratio = train_ratio self.val_ratio = val_ratio self.test_ratio = test_ratio self.is_han_to_zen = is_han_to_zen self.max_instance_num = max_instance_num self.max_char_length = max_char_length self.remove_netural = remove_netural self.output_testset = output_testset self.filter_review_id_list_valid = filter_review_id_list_valid self.label_conv_review_id_list_valid = label_conv_review_id_list_valid def get_label(rating: int, remove_netural: bool = False) -> Optional[str]: if rating >= 4: return "positive" elif rating <= 2: return "negative" else: if remove_netural: return None else: return "neutral" def is_filtered_by_ascii_rate(text: str, threshold: float = 0.9) -> bool: ascii_letters = set(string.printable) rate = sum(c in ascii_letters for c in text) / len(text) return rate >= threshold def shuffle_dataframe(df: pd.DataFrame) -> pd.DataFrame: instances = df.to_dict(orient="records") random.seed(1) random.shuffle(instances) return pd.DataFrame(instances) def get_filter_review_id_list( filter_review_id_list_paths: Dict[str, str], ) -> Dict[str, List[str]]: filter_review_id_list_valid = filter_review_id_list_paths.get("valid") filter_review_id_list_test = filter_review_id_list_paths.get("test") filter_review_id_list = {} if filter_review_id_list_valid is not None: with open(filter_review_id_list_valid, "r") as rf: filter_review_id_list["valid"] = [line.rstrip() for line in rf] if filter_review_id_list_test is not None: with open(filter_review_id_list_test, "r") as rf: filter_review_id_list["test"] = [line.rstrip() for line in rf] return filter_review_id_list def get_label_conv_review_id_list( label_conv_review_id_list_paths: Dict[str, str], ) -> Dict[str, Dict[str, str]]: import csv label_conv_review_id_list_valid = label_conv_review_id_list_paths.get("valid") label_conv_review_id_list_test = label_conv_review_id_list_paths.get("test") label_conv_review_id_list: Dict[str, Dict[str, str]] = {} if label_conv_review_id_list_valid is not None: with open(label_conv_review_id_list_valid, "r", encoding="utf-8") as rf: label_conv_review_id_list["valid"] = {row[0]: row[1] for row in csv.reader(rf)} if label_conv_review_id_list_test is not None: with open(label_conv_review_id_list_test, "r", encoding="utf-8") as rf: label_conv_review_id_list["test"] = {row[0]: row[1] for row in csv.reader(rf)} return label_conv_review_id_list def output_data( df: pd.DataFrame, train_ratio: float, val_ratio: float, test_ratio: float, output_testset: bool, filter_review_id_list_paths: Dict[str, str], label_conv_review_id_list_paths: Dict[str, str], ) -> Dict[str, pd.DataFrame]: instance_num = len(df) split_dfs: Dict[str, pd.DataFrame] = {} length1 = int(instance_num * train_ratio) split_dfs["train"] = df.iloc[:length1] length2 = int(instance_num * (train_ratio + val_ratio)) split_dfs["valid"] = df.iloc[length1:length2] split_dfs["test"] = df.iloc[length2:] filter_review_id_list = get_filter_review_id_list( filter_review_id_list_paths=filter_review_id_list_paths, ) label_conv_review_id_list = get_label_conv_review_id_list( label_conv_review_id_list_paths=label_conv_review_id_list_paths, ) for eval_type in ("valid", "test"): if filter_review_id_list.get(eval_type): df = split_dfs[eval_type] df = df[~df["review_id"].isin(filter_review_id_list[eval_type])] split_dfs[eval_type] = df for eval_type in ("valid", "test"): if label_conv_review_id_list.get(eval_type): df = split_dfs[eval_type] df = df.assign(converted_label=df["review_id"].map(label_conv_review_id_list["valid"])) df = df.assign( label=df[["label", "converted_label"]].apply( lambda xs: xs["label"] if pd.isnull(xs["converted_label"]) else xs["converted_label"], axis=1, ) ) df = df.drop(columns=["converted_label"]) split_dfs[eval_type] = df return { "train": split_dfs["train"], "valid": split_dfs["valid"], } def preprocess_marc_ja( config: MarcJaConfig, data_file_path: str, filter_review_id_list_paths: Dict[str, str], label_conv_review_id_list_paths: Dict[str, str], ) -> Dict[str, pd.DataFrame]: try: import mojimoji def han_to_zen(text: str) -> str: return mojimoji.han_to_zen(text) except ImportError: warnings.warn( "can't import `mojimoji`, failing back to method that do nothing. " "We recommend running `pip install mojimoji` to reproduce the original preprocessing.", UserWarning, ) def han_to_zen(text: str) -> str: return text try: from bs4 import BeautifulSoup def cleanup_text(text: str) -> str: return BeautifulSoup(text, "html.parser").get_text() except ImportError: warnings.warn( "can't import `beautifulsoup4`, failing back to method that do nothing." "We recommend running `pip install beautifulsoup4` to reproduce the original preprocessing.", UserWarning, ) def cleanup_text(text: str) -> str: return text from tqdm import tqdm df = pd.read_csv(data_file_path, delimiter="\t") df = df[["review_body", "star_rating", "review_id"]] # rename columns df = df.rename(columns={"review_body": "text", "star_rating": "rating"}) # convert the rating to label tqdm.pandas(dynamic_ncols=True, desc="Convert the rating to the label") df = df.assign(label=df["rating"].progress_apply(lambda rating: get_label(rating, config.remove_netural))) # remove rows where the label is None df = df[~df["label"].isnull()] # remove html tags from the text tqdm.pandas(dynamic_ncols=True, desc="Remove html tags from the text") df = df.assign(text=df["text"].progress_apply(cleanup_text)) # filter by ascii rate tqdm.pandas(dynamic_ncols=True, desc="Filter by ascii rate") df = df[~df["text"].progress_apply(is_filtered_by_ascii_rate)] if config.max_char_length is not None: df = df[df["text"].str.len() <= config.max_char_length] if config.is_han_to_zen: df = df.assign(text=df["text"].apply(han_to_zen)) df = df[["text", "label", "review_id"]] df = df.rename(columns={"text": "sentence"}) # shuffle dataset df = shuffle_dataframe(df) split_dfs = output_data( df=df, train_ratio=config.train_ratio, val_ratio=config.val_ratio, test_ratio=config.test_ratio, output_testset=config.output_testset, filter_review_id_list_paths=filter_review_id_list_paths, label_conv_review_id_list_paths=label_conv_review_id_list_paths, ) return split_dfs