# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import os import datasets _DESCRIPTION = """\ Corpus used for training AfriBERTa models """ _CITATION = """\ @inproceedings{ogueji-etal-2021-small, title = "Small Data? No Problem! Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages", author = "Ogueji, Kelechi and Zhu, Yuxin and Lin, Jimmy", booktitle = "Proceedings of the 1st Workshop on Multilingual Representation Learning", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.mrl-1.11", pages = "116--126", } """ _HOMEPAGE_URL = "https://github.com/keleog/afriberta" _VERSION = "1.0.0" _LANGUAGES = [ "afaanoromoo", "amharic", "gahuza", "hausa", "igbo", "pidgin", "somali", "swahili", "tigrinya", "yoruba"] _DATASET_URLS = { language: { "train": f"https://huggingface.co/datasets/castorini/afriberta-corpus/resolve/main/{language}/train.zip", "test": f"https://huggingface.co/datasets/castorini/afriberta-corpus/resolve/main/{language}/eval.zip", } for language in _LANGUAGES } class AfribertaCorpus(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig( version=datasets.Version(_VERSION), name=language, description=f"AfriBERTa corpus for {language}." ) for language in _LANGUAGES ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "text": datasets.Value("string"), }, ), supervised_keys=None, homepage=_HOMEPAGE_URL, citation=_CITATION, ) def _split_generators(self, dl_manager): language = self.config.name downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[language]) splits = [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "file_path": os.path.join(downloaded_files["train"], "train.txt"), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "file_path": os.path.join(downloaded_files["test"], "eval.txt"), }, ), ] return splits def _generate_examples(self, file_path): with open(file_path, encoding="utf-8") as f: for sentence_counter, line in enumerate(f): result = ( sentence_counter, { "id": str(sentence_counter), "text": line, }, ) yield result