"""(BURN) Boston University Radio News Corpus.""" import os from pathlib import Path import datasets import numpy as np logger = datasets.logging.get_logger(__name__) _PATH = os.environ.get("BURN_PATH", None) _VERSION = "0.0.2" _CITATION = """\ @article{ostendorf1995boston, title={The Boston University radio news corpus}, author={Ostendorf, Mari and Price, Patti J and Shattuck-Hufnagel, Stefanie}, journal={Linguistic Data Consortium}, pages={1--19}, year={1995} } """ _DESCRIPTION = """\ The Boston University Radio Speech Corpus was collected primarily to support research in text-to-speech synthesis, particularly generation of prosodic patterns. The corpus consists of professionally read radio news data, including speech and accompanying annotations, suitable for speech and language research. """ _URL = "https://catalog.ldc.upenn.edu/LDC96S36" class BURNConfig(datasets.BuilderConfig): """BuilderConfig for BURN.""" def __init__(self, sampling_rate=16000, hop_length=256, win_length=1024, **kwargs): """BuilderConfig for BURN. Args: **kwargs: keyword arguments forwarded to super. """ super(BURNConfig, self).__init__(**kwargs) self.sampling_rate = sampling_rate self.hop_length = hop_length self.win_length = win_length self.seconds_per_frame = hop_length / sampling_rate if _PATH is None: raise ValueError("Please set the environment variable BURN_PATH to point to the BURN dataset directory.") class BURN(datasets.GeneratorBasedBuilder): """BURN dataset.""" BUILDER_CONFIGS = [ BURNConfig( name="burn", version=datasets.Version(_VERSION, ""), ), ] def _info(self): features = { "speaker": datasets.Value("string"), "words": datasets.Sequence(datasets.Value("string")), "word_durations": datasets.Sequence(datasets.Value("int32")), "prominence": datasets.Sequence(datasets.Value("bool")), "break": datasets.Sequence(datasets.Value("bool")), "audio": datasets.Value("string"), } return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(features), supervised_keys=["prominence", "break"], homepage="https://catalog.ldc.upenn.edu/LDC96S36", citation=_CITATION, task_templates=None, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" return [ datasets.SplitGenerator( name="train", gen_kwargs={ "speakers": ["f1a", "f3a", "m1b", "m2b", "m3b", "m4b"], } ), datasets.SplitGenerator( name="dev", gen_kwargs={ "speakers": [], } ), ] def _generate_example(self, file): words = [] word_ts = [] word_durations = [] if not file.with_suffix(".ton").exists(): return None if not file.with_suffix(".brk").exists(): return None if not file.with_suffix(".wrd").exists(): return None with open(file.with_suffix(".wrd"), "r") as f: lines = f.readlines() lines = [line for line in lines if line != "\n"] # get index of "#\n" line idx = lines.index("#\n") lines = lines[idx+1:] lines = [tuple(line.strip().split()) for line in lines] # remove lines with no word lines = [line for line in lines if len(line) == 3] word_ts = np.array([float(start) for start, _, _ in lines]) words = [word for _, _, word in lines] prominence = np.zeros(len(words)) boundary = np.zeros(len(words)) if len(words) <= 1: return None with open(file.with_suffix(".ton"), "r") as f: lines = f.readlines() lines = [line for line in lines if line != "\n"] wrd_idx = 0 idx = lines.index("#\n") lines = lines[idx+1:] lines = [tuple(line.strip().split()[:3]) for line in lines] # remove lines with no word lines = [line for line in lines if len(line) == 3] for start, _, accent in lines: # find word index while float(start) > word_ts[wrd_idx]: wrd_idx += 1 if wrd_idx >= len(word_ts): # warning logger.warning(f"Word index {wrd_idx} out of bounds for file {file}") return None if accent in ['H*', 'L*', 'L*+H', 'L+H*', 'H+', '!H*']: prominence[wrd_idx] = 1 with open(file.with_suffix(".brk"), "r") as f: lines = f.readlines() lines = [line for line in lines if line != "\n"] wrd_idx = 0 idx = lines.index("#\n") lines = lines[idx+1:] lines = [tuple(line.strip().split()) for line in lines] if np.abs(len(lines) - len(words)) > 2: logger.warning(f"Word count mismatch for file {file}") return None for l in lines: if len(l) < 3: continue score = l[2] start = float(l[0]) # find word index, by finding the start value closest to word_ts wrd_idx = np.argmin(np.abs(word_ts - start)) if "3" in score or "4" in score: boundary[wrd_idx] = 1 # compute word durations using self.config.seconds_per_frame word_diff = np.concatenate([[word_ts[0]], np.diff(word_ts)]) word_durations = np.round(word_diff / self.config.seconds_per_frame).astype(np.int32) return { "words": words, "word_durations": word_durations, "prominence": prominence, "break": boundary, "audio": str(file), } def _generate_examples(self, speakers): files = list((Path(_PATH)).glob(f"**/*.sph")) speakers = [str(file).replace(_PATH, "").split("/")[1] for file in files] #speaker_list.extend([speaker] * len(speaker_sph_files)) j = 0 for i, file in enumerate(files): example = self._generate_example(file) if example is not None: example["speaker"] = speakers[i] yield j, example j += 1