--- license: mit dataset_info: features: - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: labels sequence: int64 splits: - name: train num_bytes: 121374360 num_examples: 43410 - name: validation num_bytes: 15171096 num_examples: 5426 - name: test num_bytes: 15173892 num_examples: 5427 download_size: 2670120 dataset_size: 151719348 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* # 📚 GoEmotions Dataset (Processed for Multi-Label Classification) ## 📖 Dataset Overview This dataset is a **preprocessed version of the GoEmotions dataset**, containing **multi-label emotion annotations** for text inputs. It consists of **train, validation, and test splits**. ## 🔢 Dataset Statistics | Split | Samples | |------------|---------| | **Train** | XX,XXX | | **Validation** | X,XXX | | **Test** | X,XXX | ## 📌 Features | Feature | Type | Description | |-----------------|----------------|-------------| | `input_ids` | `list[int]` | Tokenized input text | | `attention_mask` | `list[int]` | Attention mask for tokens | | `labels` | `list[int]` | Multi-label emotion encoding | ## 📂 How to Load ```python from datasets import load_dataset dataset = load_dataset("codewithdark/go-emotions-processed") print(dataset["train"][0]) ``` ## 🏋️‍♂️ Preprocessing Steps - **Tokenization:** `bert-base-uncased` - **Multi-label encoding:** Binary encoding of emotions - **Train/Validation/Test split:** `80/10/10` ## 🎯 Labels (Emotions) The dataset contains **27 emotion categories**, including: - Admiration, Joy, Sadness, Anger, Optimism, Disgust, Love, etc. ## 🛠️ Citation If you use this dataset, please cite: ```bibtex @misc{go_emotions_dataset, author = {Google AI}, title = {GoEmotions Dataset}, year = {2021}, url = {https://huggingface.co/datasets/go_emotions} } ```