--- license: mit --- # comma2k19 [comma.ai](https://comma.ai) presents comma2k19, a dataset of over 33 hours of commute in California's 280 highway. This means 2019 segments, 1 minute long each, on a 20km section of highway driving between California's San Jose and San Francisco. comma2k19 is a fully reproducible and scalable dataset. The data was collected using comma [EONs](https://comma.ai/shop/products/eon-gold-dashcam-devkit/) that has sensors similar to those of any modern smartphone including a road-facing camera, phone GPS, thermometers and 9-axis IMU. Additionally, the EON captures raw GNSS measurements and all CAN data sent by the car with a comma [grey panda](https://comma.ai/shop/products/panda-obd-ii-dongle/). Here we also introduced [Laika](https://github.com/commaai/laika), an open-source GNSS processing library. Laika produces 40% more accurate positions than the GNSS module used to collect the raw data. This dataset includes pose (position + orientation) estimates in a global reference frame of the recording camera. These poses were computed with a tightly coupled INS/GNSS/Vision optimizer that relies on data processed by Laika. comma2k19 is ideal for development and validation of tightly coupled GNSS algorithms and mapping algorithms that work with commodity sensors. ## Publication For a detailed write-up about this dataset, please refer to our [paper](https://arxiv.org/abs/1812.05752v1). If you use comma2k19 or Laika in your research, please consider citing ```text @misc{1812.05752, Author = {Harald Schafer and Eder Santana and Andrew Haden and Riccardo Biasini}, Title = {A Commute in Data: The comma2k19 Dataset}, Year = {2018}, Eprint = {arXiv:1812.05752}, } ```