diff --git "a/huggingface_pixparse.txt" "b/huggingface_pixparse.txt" new file mode 100644--- /dev/null +++ "b/huggingface_pixparse.txt" @@ -0,0 +1,2999 @@ +# File: pixparse-main/src/pixparse/app/eval.py +import logging +import os +import json +from dataclasses import dataclass, replace, field +from typing import List +import simple_parsing +from simple_parsing import ArgumentParser +import torch +from pixparse.data import DataCfg, create_loader +from pixparse.framework import TaskEval, TaskEvalCfg, DeviceEnv, Monitor, evaluate, setup_logging, random_seed +from pixparse.utils.s3_utils import load_checkpoint_from_s3 +from pixparse.task.task_factory import TaskFactory +from chug.webdataset import create_doc_anno_pipe, create_image_text_pipe +from collections import OrderedDict +_logger = logging.getLogger('eval') + +@dataclass +class EvalCfg: + experiment: str = '' + output_dir: str = './output' + log_filename: str = 'out.log' + dataset_name: str = '' + s3_bucket: str = '' + checkpoint_path: str = '' + metrics_file_path: str = '' + task_name: str = '' + datasets: List[str] = field(default_factory=lambda : ['eval']) + seed: int = 42 + +def eval(cfg: EvalCfg, task: TaskEval, eval_loaders: dict): + device_env = task.device_env + metrics = evaluate(task, eval_loaders) + with open(cfg.metrics_file_path, 'w') as f: + json.dump(metrics, f) +parser = ArgumentParser(add_option_string_dash_variants=simple_parsing.DashVariant.DASH, argument_generation_mode=simple_parsing.ArgumentGenerationMode.BOTH, add_config_path_arg=True) +parser.add_arguments(EvalCfg, dest='eval') +parser.add_arguments(TaskEvalCfg, dest='task') +parser.add_arguments(DataCfg, dest='data') + +def main(): + args = parser.parse_args() + eval_cfg: EvalCfg = args.eval + data_cfg: DataCfg = args.data + device_env = DeviceEnv() + (task, task_cfg) = TaskFactory.create_task(task_name=eval_cfg.task_name, task_args=args.task, device_env=device_env, monitor=None) + random_seed(eval_cfg.seed, rank=device_env.global_rank) + _logger.info(f'Device env is {device_env}') + assert eval_cfg.output_dir is not None, f'output_dir is not provided. Stopping eval run.' + if device_env.is_primary(): + log_path = os.path.join(eval_cfg.output_dir, eval_cfg.log_filename) + setup_logging(log_path) + monitor = Monitor(eval_cfg.experiment, output_dir=eval_cfg.output_dir, output_enabled=device_env.is_primary()) + if eval_cfg.task_name not in ['donut_eval_ocr']: + checkpoint_path = eval_cfg.checkpoint_path + eval_cfg = replace(eval_cfg, checkpoint_path=checkpoint_path) + if eval_cfg.s3_bucket != '': + _logger.info('s3 bucket specified. Loading checkpoint from s3.') + checkpoint = load_checkpoint_from_s3(eval_cfg.s3_bucket, eval_cfg.checkpoint_path) + else: + assert os.path.isfile(checkpoint_path), f'Cannot find checkpoint {checkpoint_path}: File not found' + checkpoint = torch.load(eval_cfg.checkpoint_path) + if isinstance(checkpoint, OrderedDict): + state_dict = checkpoint + else: + state_dict = checkpoint['model'] + checkpoint_name = eval_cfg.checkpoint_path.replace('/', '_').replace('.pt', '') + metrics_file_name = f'{checkpoint_name}-{eval_cfg.dataset_name}-metrics.json' + eval_state_dict = {k.replace('module.', ''): v for (k, v) in state_dict.items()} + task.resume_state_dict = eval_state_dict + else: + metrics_file_name = f'{eval_cfg.task_name}-{eval_cfg.dataset_name}-metrics.json' + eval_cfg.metrics_file_path = os.path.join(eval_cfg.output_dir, metrics_file_name) + if device_env.is_primary(): + _logger.info(task_cfg) + _logger.info(eval_cfg) + loaders = {} + assert data_cfg.eval is not None, f'data_cfg.eval is not set.' + loaders['eval'] = create_loader(data_cfg.eval, is_train=False, collate_fn=task.collate_fn, image_preprocess=task.image_preprocess_eval, anno_preprocess=task.anno_preprocess_eval, image_fmt=task_cfg.model.image_encoder.image_fmt, world_size=device_env.world_size, local_rank=device_env.local_rank, create_decoder_pipe=create_image_text_pipe) + task.setup() + if device_env.is_primary(): + _logger.info(task) + eval(eval_cfg, task, loaders) + task.end() +if __name__ == '__main__': + main() + +# File: pixparse-main/src/pixparse/app/train.py +import logging +import os +from dataclasses import dataclass, replace +from datetime import datetime +from typing import Dict, Optional +import simple_parsing +from simple_parsing import ArgumentParser +import torch +from pixparse.data import DataCfg, create_loader +from pixparse.framework import DeviceEnv, Monitor, train_one_interval, evaluate, setup_logging, random_seed, TaskTrain, TaskTrainCfg +from pixparse.utils.name_utils import clean_name +from pixparse.utils.s3_utils import load_checkpoint_from_s3 +from pixparse.task import TaskFactory +from chug.common import LoaderBundle +from chug.webdataset import create_doc_anno_pipe +from collections import OrderedDict +_logger = logging.getLogger('train') + +@dataclass +class TrainCfg: + experiment: Optional[str] = None + output_dir: str = './output' + log_filename: str = 'out.log' + s3_bucket: str = '' + resume: bool = False + checkpoint_path: str = '' + output_checkpoint_dir: Optional[str] = None + seed: int = 42 + task_name: str = 'cruller_pretrain' + wandb: bool = False + wandb_project: str = 'unknown' + tensorboard: bool = False + log_eval_data: bool = False + +def train(cfg: TrainCfg, task: TaskTrain, loaders: Dict[str, LoaderBundle]): + device_env = task.device_env + train_loader = loaders['train'] + for i in range(task.start_interval, task.num_intervals): + train_loader.set_interval(i) + train_one_interval(task, train_loader) + if device_env.is_primary(): + checkpoint_dir = os.path.join(cfg.output_checkpoint_dir, cfg.experiment) + os.makedirs(checkpoint_dir, exist_ok=True) + torch.save(task.model.state_dict(), os.path.join(checkpoint_dir, f'checkpoint-{i}.pt')) +parser = ArgumentParser(add_option_string_dash_variants=simple_parsing.DashVariant.DASH, argument_generation_mode=simple_parsing.ArgumentGenerationMode.BOTH, add_config_path_arg=True) +parser.add_arguments(TrainCfg, dest='train') +parser.add_arguments(TaskTrainCfg, dest='task') +parser.add_arguments(DataCfg, dest='data') + +def main(): + args = parser.parse_args() + train_cfg: TrainCfg = args.train + data_cfg: DataCfg = args.data + device_env = DeviceEnv() + (task, task_cfg) = TaskFactory.create_task(task_name=train_cfg.task_name, task_args=args.task, device_env=device_env, monitor=None) + random_seed(train_cfg.seed, rank=device_env.global_rank) + _logger.info(f'Device env is {device_env}') + if train_cfg.experiment is None: + model_name_safe = clean_name(task_cfg.model_name) + date_str = datetime.now().strftime('%Y%m%d-%H%M%S') + if device_env.world_size > 1: + date_str = device_env.broadcast_object(date_str) + experiment = '-'.join([date_str, f'task_{train_cfg.task_name}', f'model_{model_name_safe}', f"lr_{'{:.1e}'.format(task_cfg.opt.learning_rate)}", f'b_{data_cfg.train.batch_size}']) + train_cfg = replace(train_cfg, experiment=experiment) + resume_latest = False + experiment_path = os.path.join(train_cfg.output_dir, train_cfg.experiment) + log_path = None + if device_env.is_primary(): + os.makedirs(experiment_path, exist_ok=True) + log_path = os.path.join(experiment_path, train_cfg.log_filename) + if os.path.exists(log_path) and (not resume_latest): + _logger.error('Error. Experiment already exists. Use --experiment {} to specify a new experiment.') + return -1 + setup_logging(log_path) + task.monitor = Monitor(train_cfg.experiment, output_dir=experiment_path, wandb=train_cfg.wandb, wandb_project=train_cfg.wandb_project, tensorboard=train_cfg.tensorboard, output_enabled=device_env.is_primary()) + if train_cfg.resume: + checkpoint_path = train_cfg.checkpoint_path + train_cfg = replace(train_cfg, checkpoint_path=checkpoint_path) + if train_cfg.s3_bucket != '': + _logger.info('s3 bucket specified. Loading checkpoint from s3.') + checkpoint = load_checkpoint_from_s3(train_cfg.s3_bucket, train_cfg.checkpoint_path) + else: + assert os.path.isfile(checkpoint_path), f'Cannot find checkpoint {checkpoint_path}: File not found' + checkpoint = torch.load(train_cfg.checkpoint_path) + if isinstance(checkpoint, OrderedDict): + state_dict = checkpoint + else: + state_dict = checkpoint['model'] + task.state_dict = state_dict + task.resume = True + output_checkpoint_dir = train_cfg.output_checkpoint_dir or os.path.join(experiment_path, 'checkpoints') + os.makedirs(output_checkpoint_dir, exist_ok=True) + train_cfg = replace(train_cfg, output_checkpoint_dir=output_checkpoint_dir) + if device_env.is_primary(): + _logger.info(task_cfg) + _logger.info(train_cfg) + loaders = {} + assert data_cfg.train is not None or data_cfg.eval is not None, f'Neither data_cfg.train nor data_cfg.eval are set.' + if data_cfg.train is not None: + loaders['train'] = create_loader(data_cfg.train, is_train=True, collate_fn=task.collate_fn, image_preprocess=task.image_preprocess_train, anno_preprocess=task.anno_preprocess_train, image_fmt=task_cfg.model.image_encoder.image_fmt, world_size=device_env.world_size, global_rank=device_env.global_rank, create_decoder_pipe=create_doc_anno_pipe) + task.train_setup(num_batches_per_interval=loaders['train'].num_batches) + if device_env.is_primary(): + _logger.info(task) + train(train_cfg, task, loaders) +if __name__ == '__main__': + main() + +# File: pixparse-main/src/pixparse/data/config.py +from dataclasses import dataclass, field +from typing import List, Optional + +@dataclass +class PreprocessCfg: + pass + +@dataclass +class DatasetCfg: + source: str + num_samples: int + batch_size: int + split: str + format: str = 'webdataset' + num_workers: int = 4 + +@dataclass +class DataCfg: + train: Optional[DatasetCfg] = None + eval: Optional[DatasetCfg] = None + +# File: pixparse-main/src/pixparse/data/datasets_utils.py +import json +import os +from ast import literal_eval +import torch +from datasets import load_dataset +from PIL import Image +from torch.utils.data import DataLoader, Dataset +from torchvision import transforms +from pixparse.utils.json_utils import json2token +'' + +class CustomVQADataset(Dataset): + + def __init__(self, root_dir, split, transform=None): + self.extra_tokens = ['', '', '', ''] + self.root_dir = root_dir + self.split = split + assert split in ['train', 'test', 'val'], 'split is not train, test or val.' + if split == 'test' or split == 'val': + json_path = os.path.join(root_dir, split, f'{split}_v1.0.json') + else: + json_path = os.path.join(root_dir, split, f'processed_{split}_v1.0.json') + assert os.path.isdir(self.root_dir), f"Can't find {root_dir}. Make sure you have DocVQA files locally." + assert os.path.isfile(json_path), f'{json_path} not found. Make sure you have the processed dataset.' + self.img_dir = os.path.join(root_dir, split) + with open(json_path, 'r') as f: + self.data_dict = json.load(f) + self.all_images = list(self.data_dict.keys()) + self.transform = transform + + def __len__(self): + if self.split == 'test' or self.split == 'val': + return len(self.data_dict['data']) + return len(self.all_images) + + def __getitem__(self, index): + if self.split == 'test': + entry = self.data_dict['data'][index] + labels = '' + entry['question'] + '' + img_path = os.path.join(self.img_dir, entry['image']) + question_id = entry['questionId'] + image_id = entry['image'] + if self.split == 'val': + entry = self.data_dict['data'][index] + labels = {'question': entry['question'], 'answers': entry['answers']} + img_path = os.path.join(self.img_dir, entry['image']) + question_id = entry['questionId'] + image_id = entry['image'] + else: + image_id = self.all_images[index] + questions_and_answers = self.data_dict[image_id] + labels = questions_and_answers + img_path = os.path.join(self.img_dir, image_id) + question_id = -1 + image = Image.open(img_path).convert('L') + if self.transform: + image = self.transform(image) + return {'image': image, 'labels': labels, 'image_id': image_id, 'question_id': question_id} + +class SafeDataset: + + def __init__(self, original_dataset): + self.original_dataset = original_dataset + + def __len__(self): + return len(self.original_dataset) + + def __getitem__(self, idx): + try: + item = self.original_dataset[idx] + return item + except Exception as e: + return None + +def get_additional_tokens_from_dataset(all_special_tokens: list, dataset=None, dataset_id: str='naver-clova-ix/cord-v2') -> list: + if dataset_id == 'naver-clova-ix/cord-v2': + + def collate_fn(batch): + text_inputs = [literal_eval(item['ground_truth'])['gt_parse'] for item in batch] + return {'label': text_inputs} + cord = load_dataset(dataset_id) + loader = DataLoader(cord['train'], batch_size=32, collate_fn=collate_fn) + new_special_tokens = [] + for (i, batch) in enumerate(loader): + for text in batch['label']: + (_, batch_special_tokens) = json2token(text, all_special_tokens) + new_special_tokens += batch_special_tokens + new_special_tokens = list(set(new_special_tokens)) + return new_special_tokens + +# File: pixparse-main/src/pixparse/data/loader.py +from typing import Callable +from chug import create_wds_loader, create_doc_anno_pipe +from chug.common import LoaderBundle +from datasets import VerificationMode +from datasets import load_dataset +from torch.utils.data import DataLoader, DistributedSampler +from pixparse.data.datasets_utils import SafeDataset, CustomVQADataset +from .config import DatasetCfg + +class GenericLoader(DataLoader): + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.num_batches = len(self.dataset) // self.batch_size + if len(self.dataset) % self.batch_size != 0: + self.num_batches += 1 + +def create_loader(cfg: DatasetCfg, is_train: bool, image_preprocess, anno_preprocess, collate_fn: Callable=None, image_key='pdf;tif;tiff;png;jpg;jpeg', image_fmt='L', start_interval: int=0, seed: int=0, world_size: int=1, global_rank: int=0, create_decoder_pipe: Callable=create_doc_anno_pipe): + decoder = create_decoder_pipe(image_preprocess=image_preprocess, anno_preprocess=anno_preprocess, image_key=image_key, image_fmt=image_fmt) + if cfg.format == 'webdataset': + loader = create_wds_loader(cfg.source, decoder, is_train=is_train, num_samples=cfg.num_samples, workers=cfg.num_workers, batch_size=cfg.batch_size, seed=seed, world_size=world_size) + elif cfg.format == 'hf_dataset': + if cfg.source == 'SinglePageDocVQA': + dataset = CustomVQADataset(root_dir=f'/fsx/pablo/.cache/{cfg.source}', split=cfg.split) + else: + dataset = load_dataset(cfg.source, verification_mode=VerificationMode.ALL_CHECKS)[cfg.split] + dataset = SafeDataset(dataset) + sampler = None + if world_size > 1: + sampler = DistributedSampler(dataset, rank=global_rank, shuffle=True, seed=seed, num_replicas=world_size, drop_last=True) + base_loader = DataLoader(dataset=dataset, collate_fn=collate_fn, sampler=sampler, batch_size=cfg.batch_size, num_workers=cfg.num_workers) + loader = LoaderBundle(loader=base_loader, num_batches=len(base_loader), num_samples=len(dataset), sampler=sampler) + return loader + +# File: pixparse-main/src/pixparse/data/preprocess.py +import logging +from typing import Callable +import torch +_logger = logging.getLogger(__name__) + +def preprocess_text_anno(anno, tokenizer: Callable, max_position_embeddings: int, task_start_token: str, prompt_end_token: str, ignore_id: int=-100, generator=None): + text = task_start_token + anno + tokenizer.eos_token + tokenizer_fn = lambda x: tokenizer(x, add_special_tokens=False, return_tensors='pt', max_length=max_position_embeddings, padding='max_length', truncation=True).input_ids[0] + text = tokenizer_fn(text) + target = text.clone() + target[target == tokenizer.pad_token_id] = ignore_id + prompt_end_token_id = tokenizer.convert_tokens_to_ids(prompt_end_token) + target[:torch.nonzero(target == prompt_end_token_id).sum() + 1] = ignore_id + return dict(text=[text], target=[target]) + +def preprocess_ocr_anno(anno, tokenizer: Callable, max_position_embeddings: int, task_start_token: str, prompt_end_token: str, ignore_id: int=-100, generator=None): + if isinstance(anno, list): + _logger.warning('Old [id, {}] annotation form found, correcting...') + anno = anno[1] + num_pages = len(anno['pages']) + if not num_pages: + raise RuntimeError('Empty annotation. Skipping...') + tokenizer_fn = lambda x: tokenizer(x, add_special_tokens=False, return_tensors='pt', max_length=max_position_embeddings, padding='max_length', truncation=True).input_ids[0] + pad_token_id = tokenizer.pad_token_id + prompt_end_token_id = tokenizer.convert_tokens_to_ids(prompt_end_token) + current_index = generator.randint(0, num_pages - 1) + if not anno['pages'][current_index]['text']: + current_index = get_next_valid_page_index(current_index, num_pages, anno) + page_indices = [] + text_pages = [] + target_pages = [] + n_wanted_pages = min(1, num_pages) + while len(text_pages) < n_wanted_pages: + anno_page = anno['pages'][current_index] + if not anno_page['text']: + raise RuntimeError('No text on page, skipping...') + text = '\n'.join(anno_page['text']) + orig_text = text + text = task_start_token + text + tokenizer.eos_token + text = tokenizer_fn(text) + target = text.clone() + target[target == pad_token_id] = ignore_id + target[:torch.nonzero(target == prompt_end_token_id).sum() + 1] = ignore_id + text_pages.append(text) + target_pages.append(target) + page_indices.append(current_index) + current_index = get_next_valid_page_index(current_index, num_pages, anno) + return (dict(text=text_pages, target=target_pages), dict(page_indices=page_indices, num_pages=num_pages, orig_text=orig_text)) + +def get_next_valid_page_index(current_index: int, num_pages: int, anno: dict, retries: int=10): + for _ in range(retries): + current_index = (current_index + 1) % num_pages + anno_page = anno['pages'][current_index] + if anno_page['text']: + return current_index + raise RuntimeError(f'No non-empty page found after {retries} attempts') + +# File: pixparse-main/src/pixparse/data/transforms.py +import random +from typing import Tuple, Union +import timm.data.transforms +import torch +import torchvision.transforms.functional as F +from torchvision import transforms +from PIL import Image, ImageOps, ImageFilter +from timm.data.transforms import CenterCropOrPad +from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +import numpy as np +try: + import albumentations as alb + from albumentations.pytorch import ToTensorV2 + has_albumentations = True +except ImportError: + has_albumentations = False +try: + import cv2 + has_cv2 = True +except ImportError: + has_cv2 = False + +def create_transforms(name, image_size, training=True, image_mean=IMAGENET_DEFAULT_MEAN, image_std=IMAGENET_DEFAULT_STD, interpolation: str='bicubic', crop_margin: bool=False, align_long_axis: bool=False, fill=255): + basic_args = dict(training=training, image_mean=image_mean, image_std=image_std) + adv_args = dict(interpolation=interpolation, crop_margin=crop_margin, align_long_axis=align_long_axis, fill=fill) + if name == 'better': + return better_transforms(image_size, **basic_args, **adv_args) + elif name == 'nougat': + return nougat_transforms(image_size, **basic_args, **adv_args) + else: + return legacy_transforms(image_size, **basic_args) + +def legacy_transforms(image_size, image_mean, image_std, training=False): + pp = transforms.Compose([transforms.Resize(image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.ToTensor(), transforms.Normalize(mean=image_mean, std=image_std)]) + return pp + +def better_transforms(image_size, training=True, image_mean=IMAGENET_DEFAULT_MEAN, image_std=IMAGENET_DEFAULT_STD, interpolation='bicubic', crop_margin=False, align_long_axis=False, fill=255): + interpolation_mode = timm.data.transforms.str_to_interp_mode(interpolation) + pp = [] + if crop_margin: + assert has_cv2, 'CV2 needed to use crop margin.' + pp += [CropMargin()] + if align_long_axis: + pp += [AlignLongAxis(image_size, interpolation=interpolation_mode)] + if training: + pp += [ResizeKeepRatio(image_size, longest=1, interpolation=interpolation, random_scale_prob=0.05, random_scale_range=(0.85, 1.04), random_aspect_prob=0.05, random_aspect_range=(0.9, 1.11)), transforms.RandomApply([Bitmap()], p=0.05), transforms.RandomApply([transforms.RandomChoice([Erosion(3), Dilation(3)])], p=0.02), transforms.RandomApply([transforms.RandomAffine(degrees=0, shear=(0, 3.0, -3, 0), interpolation=interpolation_mode, fill=fill)], p=0.05), transforms.RandomApply([transforms.RandomAffine(degrees=3, translate=(0, 0.04), interpolation=interpolation_mode, fill=fill)], p=0.05), transforms.RandomApply([transforms.ElasticTransform(alpha=50.0, sigma=120 * 0.1, interpolation=interpolation_mode, fill=fill)], p=0.05), transforms.RandomApply([transforms.ColorJitter(0.1, 0.1)], p=0.05), transforms.RandomApply([transforms.GaussianBlur(3, sigma=(0.1, 0.5))], p=0.05), RandomPad(image_size, fill=fill), transforms.CenterCrop(image_size)] + else: + pp += [ResizeKeepRatio(image_size, longest=1, interpolation=interpolation), CenterCropOrPad(image_size, fill=fill)] + pp += [transforms.ToTensor(), transforms.Normalize(image_mean, image_std)] + return transforms.Compose(pp) + +def nougat_transforms(image_size, training=True, image_mean=IMAGENET_DEFAULT_MEAN, image_std=IMAGENET_DEFAULT_STD, align_long_axis=False, interpolation='bicubic', fill=255, crop_margin=False): + assert has_albumentations, 'Albumentations and CV2 needed to use nougat transforms.' + if interpolation == 'bilinear': + interpolation_mode = 1 + else: + interpolation_mode = 2 + tv_pp = [] + alb_pp = [] + if crop_margin: + tv_pp += [CropMargin()] + if align_long_axis: + tv_pp += [AlignLongAxis(image_size)] + if training: + tv_pp += [ResizeKeepRatio(image_size, longest=1, interpolation=interpolation), RandomPad(image_size, fill=fill)] + alb_pp += [BitmapAlb(p=0.05), alb.OneOf([ErosionAlb((2, 3)), DilationAlb((2, 3))], p=0.02), alb.Affine(shear={'x': (0, 3), 'y': (-3, 0)}, cval=(255, 255, 255), p=0.03), alb.ShiftScaleRotate(shift_limit_x=(0, 0.04), shift_limit_y=(0, 0.03), scale_limit=(-0.15, 0.03), rotate_limit=2, border_mode=0, interpolation=interpolation_mode, value=fill, p=0.03), alb.GridDistortion(distort_limit=0.05, border_mode=0, interpolation=interpolation_mode, value=fill, p=0.04), alb.Compose([alb.Affine(translate_px=(0, 5), always_apply=True, cval=(255, 255, 255)), alb.ElasticTransform(p=1, alpha=50, sigma=120 * 0.1, alpha_affine=120 * 0.01, border_mode=0, value=fill)], p=0.04), alb.RandomBrightnessContrast(0.1, 0.1, True, p=0.03), alb.ImageCompression(95, p=0.07), alb.GaussNoise(20, p=0.08), alb.GaussianBlur((3, 3), p=0.03)] + else: + tv_pp += [ResizeKeepRatio(image_size, longest=1, interpolation=interpolation), CenterCropOrPad(image_size, fill=fill)] + alb_pp += [alb.Normalize(image_mean, image_std), alb.pytorch.ToTensorV2()] + tv_pp += [alb_wrapper(alb.Compose(alb_pp))] + return transforms.Compose(tv_pp) + +def alb_wrapper(transform): + + def f(im): + return transform(image=np.asarray(im))['image'] + return f + +class CropMargin: + + def __init__(self): + pass + + def __call__(self, img): + if isinstance(img, torch.Tensor): + assert False + else: + data = np.array(img.convert('L')) + data = data.astype(np.uint8) + max_val = data.max() + min_val = data.min() + if max_val == min_val: + return img + data = (data - min_val) / (max_val - min_val) * 255 + gray = 255 * (data < 200).astype(np.uint8) + coords = cv2.findNonZero(gray) + (a, b, w, h) = cv2.boundingRect(coords) + return img.crop((a, b, w + a, h + b)) + +class AlignLongAxis: + + def __init__(self, input_size, interpolation=transforms.InterpolationMode.BICUBIC): + self.input_size = input_size + self.interpolation = interpolation + + def __call__(self, img): + is_tensor = isinstance(img, torch.Tensor) + (img_height, img_width) = img.shape[-2:] if is_tensor else (img.height, img.width) + if self.input_size[0] > self.input_size[1] and img_width > img_height or (self.input_size[0] < self.input_size[1] and img_width < img_height): + img = F.rotate(img, angle=-90, expand=True, interpolation=self.interpolation) + return img + +class RandomPad: + + def __init__(self, input_size, fill=0): + self.input_size = input_size + self.fill = fill + + @staticmethod + def get_params(img, input_size): + (width, height) = F.get_image_size(img) + delta_width = max(input_size[1] - width, 0) + delta_height = max(input_size[0] - height, 0) + pad_left = random.randint(0, delta_width) + pad_top = random.randint(0, delta_height) + pad_right = delta_width - pad_left + pad_bottom = delta_height - pad_top + return (pad_left, pad_top, pad_right, pad_bottom) + + def __call__(self, img): + padding = self.get_params(img, self.input_size) + img = F.pad(img, padding, self.fill) + return img + +class ResizeKeepRatio: + + def __init__(self, size, longest=0.0, interpolation='bilinear', random_scale_prob=0.0, random_scale_range=(0.85, 1.05), random_aspect_prob=0.0, random_aspect_range=(0.9, 1.11)): + if isinstance(size, (list, tuple)): + self.size = tuple(size) + else: + self.size = (size, size) + self.interpolation = timm.data.transforms.str_to_interp_mode(interpolation) + self.longest = float(longest) + self.random_scale_prob = random_scale_prob + self.random_scale_range = random_scale_range + self.random_aspect_prob = random_aspect_prob + self.random_aspect_range = random_aspect_range + + @staticmethod + def get_params(img, target_size, longest, random_scale_prob=0.0, random_scale_range=(0.85, 1.05), random_aspect_prob=0.0, random_aspect_range=(0.9, 1.11)): + source_size = img.size[::-1] + (h, w) = source_size + (target_h, target_w) = target_size + ratio_h = h / target_h + ratio_w = w / target_w + ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1.0 - longest) + if random_scale_prob > 0 and random.random() < random_scale_prob: + ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1]) + ratio_factor = (ratio_factor, ratio_factor) + else: + ratio_factor = (1.0, 1.0) + if random_aspect_prob > 0 and random.random() < random_aspect_prob: + aspect_factor = random.uniform(random_aspect_range[0], random_aspect_range[1]) + ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor) + size = [round(x * f / ratio) for (x, f) in zip(source_size, ratio_factor)] + return size + + def __call__(self, img): + size = self.get_params(img, self.size, self.longest, self.random_scale_prob, self.random_scale_range, self.random_aspect_prob, self.random_aspect_range) + img = F.resize(img, size, self.interpolation) + return img + + def __repr__(self): + interpolate_str = timm.data.transforms.interp_mode_to_str(self.interpolation) + format_string = self.__class__.__name__ + '(size={0}'.format(self.size) + format_string += f', interpolation={interpolate_str})' + format_string += f', longest={self.longest:.3f})' + return format_string + +class Bitmap: + + def __init__(self, threshold=200): + self.lut = [0 if i < threshold else i for i in range(256)] + + def __call__(self, img): + if img.mode == 'RGB' and len(self.lut) == 256: + lut = self.lut + self.lut + self.lut + else: + lut = self.lut + return img.point(lut) + +class Erosion: + + def __init__(self, scale=3): + super().__init__() + if type(scale) is tuple or type(scale) is list: + assert len(scale) == 2 + self.scale = scale + else: + self.scale = (scale, scale) + + @staticmethod + def get_params(scale): + if type(scale) is tuple or type(scale) is list: + assert len(scale) == 2 + scale = random.choice(scale) + return scale + + def __call__(self, img): + kernel_size = self.get_params(self.scale) + if isinstance(img, torch.Tensor): + padding = kernel_size // 2 + img = -torch.nn.functional.max_pool2d(-img, kernel_size=kernel_size, padding=padding) + elif isinstance(img, Image.Image): + img = img.filter(ImageFilter.MinFilter(kernel_size)) + return img + +class Dilation: + + def __init__(self, scale=3): + super().__init__() + self.scale = scale + + @staticmethod + def get_params(scale): + if type(scale) is tuple or type(scale) is list: + assert len(scale) == 2 + scale = random.choice(scale) + return scale + + def __call__(self, img): + kernel_size = self.get_params(self.scale) + if isinstance(img, torch.Tensor): + padding = kernel_size // 2 + img = torch.nn.functional.max_pool2d(img, kernel_size=kernel_size, padding=padding) + elif isinstance(img, Image.Image): + img = img.filter(ImageFilter.MaxFilter(kernel_size)) + return img +if has_albumentations: + + class ErosionAlb(alb.ImageOnlyTransform): + + def __init__(self, scale, always_apply=False, p=0.5): + super().__init__(always_apply=always_apply, p=p) + if type(scale) is tuple or type(scale) is list: + assert len(scale) == 2 + self.scale = scale + else: + self.scale = (scale, scale) + + def apply(self, img, **params): + kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, tuple(np.random.randint(self.scale[0], self.scale[1], 2))) + img = cv2.erode(img, kernel, iterations=1) + return img + + class DilationAlb(alb.ImageOnlyTransform): + + def __init__(self, scale, always_apply=False, p=0.5): + super().__init__(always_apply=always_apply, p=p) + if type(scale) is tuple or type(scale) is list: + assert len(scale) == 2 + self.scale = scale + else: + self.scale = (scale, scale) + + def apply(self, img, **params): + kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, tuple(np.random.randint(self.scale[0], self.scale[1], 2))) + img = cv2.dilate(img, kernel, iterations=1) + return img + + class BitmapAlb(alb.ImageOnlyTransform): + + def __init__(self, value=0, lower=200, always_apply=False, p=0.5): + super().__init__(always_apply=always_apply, p=p) + self.lower = lower + self.value = value + + def apply(self, img, **params): + img = img.copy() + img[img < self.lower] = self.value + return img + +# File: pixparse-main/src/pixparse/framework/config.py +from dataclasses import dataclass, field +from typing import Optional, Tuple + +@dataclass +class OptimizationCfg: + optimizer: str = 'adamw' + scheduler: str = 'cosine' + learning_rate: float = 0.0005 + warmup_learning_rate: float = 0.0 + weight_decay: float = 0.02 + eps: float = 1e-06 + clip_grad_value: Optional[float] = None + clip_grad_mode: Optional[str] = None + grad_accum_steps: int = 1 + momentum: Optional[float] = None + betas: Optional[Tuple[float, float]] = None + layer_decay: Optional[float] = None + +@dataclass +class TaskTrainCfg: + num_intervals: int = 100 + num_warmup_intervals: int = 5 + eval_frequency: int = 1000 + opt: OptimizationCfg = field(default_factory=OptimizationCfg) + dtype: Optional[str] = None + amp: bool = True + model_name: str = '' + +@dataclass +class TaskEvalCfg: + dtype: Optional[str] = None + amp: bool = True + model_name: str = '' + model_state_dict: dict = field(default_factory=dict) + +# File: pixparse-main/src/pixparse/framework/device.py +"""""" +import os +from dataclasses import dataclass, field, InitVar +from enum import Enum +from typing import Union, Optional, List, Tuple +import torch +import torch.distributed as dist + +def is_distributed_env(): + if 'WORLD_SIZE' in os.environ: + return int(os.environ['WORLD_SIZE']) > 1 + if 'SLURM_NTASKS' in os.environ: + return int(os.environ['SLURM_NTASKS']) > 1 + return False + +def world_info_from_env(): + local_rank = 0 + for v in ('LOCAL_RANK', 'MPI_LOCALRANKID', 'SLURM_LOCALID', 'OMPI_COMM_WORLD_LOCAL_RANK'): + if v in os.environ: + local_rank = int(os.environ[v]) + break + global_rank = 0 + for v in ('RANK', 'PMI_RANK', 'SLURM_PROCID', 'OMPI_COMM_WORLD_RANK'): + if v in os.environ: + global_rank = int(os.environ[v]) + break + world_size = 1 + for v in ('WORLD_SIZE', 'PMI_SIZE', 'SLURM_NTASKS', 'OMPI_COMM_WORLD_SIZE'): + if v in os.environ: + world_size = int(os.environ[v]) + break + return (local_rank, global_rank, world_size) + +class DeviceEnvType(Enum): + CPU = 'cpu' + CUDA = 'cuda' + XLA = 'xla' + +@dataclass +class DeviceEnv: + init_device_type: InitVar[Optional[str]] = None + init_device_index: InitVar[Optional[int]] = None + init_dist_backend: InitVar[str] = 'nccl' + init_dist_url: InitVar[str] = 'env://' + device: torch.device = field(init=False) + world_size: Optional[int] = None + local_rank: Optional[int] = None + global_rank: Optional[int] = None + + def is_global_primary(self): + return self.global_rank == 0 + + def is_local_primary(self): + return self.local_rank == 0 + + def is_primary(self, local=False): + return self.is_local_primary() if local else self.is_global_primary() + + def __post_init__(self, init_device_type: Optional[str], init_device_index: Optional[int], init_dist_backend: str, init_dist_url: str): + assert torch.cuda.device_count() + torch.backends.cudnn.benchmark = True + torch.backends.cuda.matmul.allow_tf32 = True + (init_local_rank, init_global_rank, init_world_size) = world_info_from_env() + if init_world_size > 1: + assert init_device_index is None + self.local_rank = int(init_local_rank) + is_slurm = 'SLURM_PROCID' in os.environ + if 'SLURM_PROCID' in os.environ: + torch.distributed.init_process_group(backend=init_dist_backend, init_method=init_dist_url, world_size=init_world_size, rank=init_global_rank) + else: + torch.distributed.init_process_group(backend=init_dist_backend, init_method=init_dist_url) + self.world_size = torch.distributed.get_world_size() + self.global_rank = torch.distributed.get_rank() + if is_slurm: + assert self.world_size == init_world_size + assert self.global_rank == init_global_rank + self.device = torch.device('cuda:%d' % self.local_rank) + torch.cuda.set_device(self.local_rank) + else: + self.device = torch.device('cuda' if init_device_index is None else f'cuda:{init_device_index}') + self.local_rank = 0 + self.world_size = 1 + self.global_rank = 0 + + def broadcast_object(self, obj, src=0): + if self.global_rank == src: + objects = [obj] + else: + objects = [None] + dist.broadcast_object_list(objects, src=src) + return objects[0] + + def all_gather_object(self, obj, dst=0): + objects = [None for _ in range(self.world_size)] + dist.all_gather_object(objects, obj) + return objects + +# File: pixparse-main/src/pixparse/framework/eval.py +from .task import TaskEval + +def evaluate(task: TaskEval, loaders): + metrics = dict() + authorized_loaders = task.prepare_for_evaluation(loaders) + for (key, loader) in authorized_loaders.items(): + metrics[key] = dict() + for (index_batch, sample) in enumerate(loader.loader): + metrics[key][index_batch] = task.step(sample) + if hasattr(task, 'average_metrics'): + averaged_metrics = task.average_metrics(metrics[key]) + metrics[key] = {} + metrics[key]['average'] = averaged_metrics + return metrics + +# File: pixparse-main/src/pixparse/framework/logger.py +import logging + +def setup_logging(log_file, debug=False, include_host=False, set_all_loggers=False): + level = logging.DEBUG if debug else logging.INFO + if include_host: + import socket + hostname = socket.gethostname() + formatter = logging.Formatter(f'%(asctime)s | {hostname} | %(levelname)s | %(message)s', datefmt='%Y-%m-%d,%H:%M:%S') + else: + formatter = logging.Formatter('%(asctime)s | %(levelname)s | %(message)s', datefmt='%Y-%m-%d,%H:%M:%S') + logging.root.setLevel(level) + if set_all_loggers: + loggers = [logging.getLogger(name) for name in logging.root.manager.loggerDict] + for logger in loggers: + logger.setLevel(level) + stream_handler = logging.StreamHandler() + stream_handler.setFormatter(formatter) + logging.root.addHandler(stream_handler) + if log_file: + file_handler = logging.FileHandler(filename=log_file) + file_handler.setFormatter(formatter) + logging.root.addHandler(file_handler) + +# File: pixparse-main/src/pixparse/framework/monitor.py +import csv +import logging +import os +from collections import OrderedDict +from typing import Optional, Tuple, Dict, Union +import torch +from torch.utils.tensorboard.summary import image +_logger = logging.getLogger(__name__) +try: + from torch.utils.tensorboard import SummaryWriter + HAS_TB = True +except ImportError as e: + HAS_TB = False +try: + import wandb + HAS_WANDB = True +except ImportError: + HAS_WANDB = False + +def summary_row_dict(results, index=None, index_name='epoch'): + assert isinstance(results, dict) + row_dict = OrderedDict() + if index is not None: + row_dict[index_name] = index + if not results: + return row_dict + if isinstance(next(iter(results.values())), dict): + for (p, pr) in results.items(): + assert isinstance(pr, dict) + row_dict.update([('_'.join([p, k]), v) for (k, v) in pr.items()]) + else: + row_dict.update(results) + return row_dict + +class SummaryCsv: + + def __init__(self, output_dir, filename='summary.csv'): + self.output_dir = output_dir + self.filename = os.path.join(output_dir, filename) + self.needs_header = not os.path.exists(self.filename) + + def update(self, row_dict): + with open(self.filename, mode='a') as cf: + dw = csv.DictWriter(cf, fieldnames=row_dict.keys()) + if self.needs_header: + dw.writeheader() + self.needs_header = False + dw.writerow(row_dict) +_sci_keys = {'lr'} + +def _add_kwargs(text_update, name_map=None, **kwargs): + + def _to_str(key, val): + if isinstance(val, float): + if key.lower() in _sci_keys: + return f'{key}: {val:.3e} ' + else: + return f'{key}: {val:.4f}' + else: + return f'{key}: {val}' + + def _map_name(key, name_map, capitalize=False): + if name_map is None: + if capitalize: + return key.capitalize() if not key.isupper() else key + else: + return key + return name_map.get(key, None) + for (k, v) in kwargs.items(): + if isinstance(v, dict): + for (kk, vv) in v.items(): + name = _map_name(kk, name_map) + if not name: + continue + text_update += [_to_str(kk, vv)] + else: + name = _map_name(k, name_map) + if not name: + continue + text_update += [_to_str(name, v)] + +class Monitor: + + def __init__(self, experiment_name=None, output_dir=None, logger=None, hparams=None, wandb=False, wandb_project='unknown', wandb_dir='wandb', tensorboard=False, tensorboard_dir='tensorboard', output_enabled=True, log_eval_data=False): + self.output_dir = output_dir + self.logger = logger or logging.getLogger('log') + hparams = hparams or {} + if output_dir is not None: + self.csv_writer = SummaryCsv(output_dir=output_dir) + else: + self.csv_writer = None + self.tensorboard = None + if tensorboard: + assert HAS_TB + self.tensorboard = SummaryWriter(log_dir=os.path.join(self.output_dir, tensorboard_dir)) + self.wandb = None + if wandb: + if HAS_WANDB: + dir_ = os.path.join(self.output_dir, wandb_dir) + self.wandb = wandb.init(project=wandb_project, name=experiment_name, config=hparams, dir=dir_) + _logger.info(f'Wandb found. Metrics are being logged to {dir_}') + else: + _logger.warning("You've requested to log metrics to wandb but package not found. Metrics not being logged to wandb, try `pip install wandb`") + self.output_enabled = output_enabled + self.log_eval_data = log_eval_data + + def log_step(self, phase: str, step_idx: int, step_end_idx: Optional[int]=None, interval: Optional[int]=None, loss: Optional[float]=None, rate: Optional[Union[float, Tuple[float, float]]]=None, learning_rate: Optional[float]=None, phase_suffix: str='', metrics: dict=None, eval_data: dict=None, **kwargs): + if not self.output_enabled: + return + if 'num_steps' in kwargs: + step_end_idx = max(0, kwargs.pop('num_steps') - 1) + phase_title = f'{phase.capitalize()} ({phase_suffix})' if phase_suffix else f'{phase.capitalize()}:' + progress = 100.0 * step_idx / step_end_idx if step_end_idx else 0.0 + rate_str = '' + if isinstance(rate, (tuple, list)): + rate_str = f'Rate: {rate[0]:.2f}/s ({rate[1]:.2f}/s)' + elif rate is not None: + rate_str = f'Rate: {rate:.2f}/s' + text_update = [phase_title, f'{interval}' if interval is not None else None, f'[{step_idx}]' if step_end_idx is None else None, f'[{step_idx}/{step_end_idx} ({progress:>3.0f}%)]' if step_end_idx is not None else None, rate_str, f'loss: {loss:.5f}' if loss is not None else None, f'lr: {learning_rate:.5f}' if learning_rate is not None else None] + _add_kwargs(text_update, **kwargs) + log_str = ' '.join((item for item in text_update if item)) + self.logger.info(log_str) + if self.tensorboard is not None: + if metrics is not None: + for (metric_category, metric_items) in metrics.items(): + for (metric_name, metric_value) in metric_items.items(): + self.tensorboard.add_scalar('/'.join([metric_category, metric_name, phase_title]), metric_value, step_idx) + if eval_data is not None and self.log_eval_data: + for (eval_data_category, eval_data_triplet) in eval_data.items(): + if eval_data_category == 'ocr_reconstruction_data': + image_tag = '/'.join([eval_data_category, 'image', phase_title]) + self.tensorboard._get_file_writer().add_summary(image(image_tag, eval_data_triplet['image'], dataformats='CHW'), step_idx) + self.tensorboard.add_text('/'.join([eval_data_category, 'original_text', phase_title]), eval_data_triplet['original_text'], step_idx) + self.tensorboard.add_text('/'.join([eval_data_category, 'reconstructed_text', phase_title]), eval_data_triplet['reconstructed_text'], step_idx) + if loss is not None: + self.tensorboard.add_scalar('/'.join(['Loss', phase_title]), loss, step_idx) + if learning_rate is not None: + self.tensorboard.add_scalar('/'.join(['Learning Rate', phase_title]), loss, step_idx) + for (k, v) in kwargs.items(): + self.tensorboard.add_scalar('/'.join([k, phase_title]), v, step_idx) + if self.wandb is not None: + wandb_log = dict(**kwargs) + if loss: + wandb_log['loss'] = loss + if learning_rate: + wandb_log['learning_rate'] = learning_rate + + def log_phase(self, phase: str='eval', interval: Optional[int]=None, name_map: Optional[dict]=None, **kwargs): + if not self.output_enabled: + return + title = [f'{phase.capitalize()}', f'interval {interval}' if interval is not None else None, 'completed. '] + title_str = ' '.join((i for i in title if i)) + results = [] + _add_kwargs(results, name_map=name_map, **kwargs) + log_str = title_str + ', '.join((item for item in results if item)) + self.logger.info(log_str) + + def write_summary(self, results: Dict, index: Optional[Union[int, str]]=None, index_name: str='interval'): + if not self.output_enabled: + return + row_dict = summary_row_dict(index=index, index_name=index_name, results=results) + if self.csv_writer: + self.csv_writer.update(row_dict) + if self.wandb is not None: + wandb.log(row_dict) + if self.tensorboard: + pass + +# File: pixparse-main/src/pixparse/framework/task.py +from dataclasses import dataclass +from typing import Any, Dict, Optional +from .config import TaskTrainCfg, TaskEvalCfg +from .device import DeviceEnv +from .monitor import Monitor + +class Task: + + def __init__(self, device_env: DeviceEnv, monitor: Monitor=None): + self.device_env = device_env + self.monitor = monitor + +class TaskEval(Task): + + def __init__(self, cfg: TaskEvalCfg, device_env: DeviceEnv, monitor: Monitor=None): + super().__init__(device_env=device_env, monitor=monitor) + + def collate_fn(self, batch): + pass + + def setup(self, *args, **kwargs): + pass + + def prepare_for_evaluation(self): + pass + + def step(self, sample: Dict[str, Any]) -> Dict[str, Any]: + pass + + def end(self): + pass + +class TaskTrain(Task): + + def __init__(self, cfg: TaskTrainCfg, device_env: DeviceEnv, monitor: Monitor=None): + super().__init__(device_env=device_env, monitor=monitor) + self.num_intervals = cfg.num_intervals + self.num_warmup_intervals = cfg.num_warmup_intervals + self.eval_frequency = cfg.eval_frequency + self.num_steps_per_interval = None + self.start_interval = 0 + self.step = 0 + self.batch_idx = 0 + self.interval_idx = 0 + self.interval_batch_idx = 0 + self.optimizer = None + self.scheduler = None + self.scaler = None + self.autocast = None + + def collate_fn(self, batch): + pass + + def train_setup(self, *args, **kwargs): + pass + + def train_interval_start(self): + pass + + def train_interval_end(self): + pass + + def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: + pass + + def eval_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: + pass + + def get_current_lr(self): + lrl = [param_group['lr'] for param_group in self.optimizer.param_groups] + lr = sum(lrl) / len(lrl) + return lr + +# File: pixparse-main/src/pixparse/framework/train.py +from .task import TaskTrain +import torch +import os + +def train_one_interval(task: TaskTrain, loader): + task.train_interval_start() + for (i, sample) in enumerate(loader.loader): + task.train_step(sample) + task.train_interval_end() + +# File: pixparse-main/src/pixparse/models/config.py +import copy +import re +from pathlib import Path +from dataclasses import dataclass, field +from typing import Optional, Tuple +from simple_parsing.helpers import Serializable +from pixparse.utils.name_utils import _natural_key, clean_name +_MODEL_CONFIG_PATHS = [Path(__file__).parent / f'configs/'] +_MODEL_CONFIGS = {} + +@dataclass +class ImageEncoderCfg(Serializable): + name: str = 'vit_base_patch16_224' + image_fmt: str = 'L' + image_size: Optional[Tuple[int, int]] = (576, 448) + pretrained: bool = True + +@dataclass +class TextDecoderCfg(Serializable): + name: str = 'facebook/bart-base' + pretrained: bool = True + num_decoder_layers: Optional[int] = 4 + max_length: Optional[int] = 1024 + pad_token_id: Optional[int] = None + +@dataclass +class ModelCfg(Serializable): + image_encoder: ImageEncoderCfg = field(default_factory=ImageEncoderCfg) + text_decoder: TextDecoderCfg = field(default_factory=TextDecoderCfg) + +def _scan_model_configs(): + global _MODEL_CONFIGS + config_ext = ('.json',) + config_files = [] + for config_path in _MODEL_CONFIG_PATHS: + if config_path.is_file() and config_path.suffix in config_ext: + config_files.append(config_path) + elif config_path.is_dir(): + for ext in config_ext: + config_files.extend(config_path.glob(f'*{ext}')) + for cf in config_files: + model_cfg = ModelCfg.load(cf) + _MODEL_CONFIGS[cf.stem] = model_cfg + _MODEL_CONFIGS = {k: v for (k, v) in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))} +_scan_model_configs() + +def list_models(): + return list(_MODEL_CONFIGS.keys()) + +def get_model_config(model_name): + model_name = clean_name(model_name) + cfg = _MODEL_CONFIGS.get(model_name, None) + return copy.deepcopy(cfg) + +# File: pixparse-main/src/pixparse/models/cruller.py +import torch.nn as nn +from .config import ModelCfg +from .image_encoder_timm import ImageEncoderTimm +from .text_decoder_hf import TextDecoderHf + +class Cruller(nn.Module): + + def __init__(self, cfg: ModelCfg): + super().__init__() + self.image_encoder = ImageEncoderTimm(cfg.image_encoder) + self.text_decoder = TextDecoderHf(cfg.text_decoder) + + def forward(self, image_input, text_input): + encoder_output = self.image_encoder(image_input) + decoder_output = self.text_decoder(text_input, encoder_hidden_states=encoder_output, return_dict=True) + return decoder_output + +# File: pixparse-main/src/pixparse/models/image_encoder_timm.py +import timm +from torch import nn as nn +from pixparse.models.config import ImageEncoderCfg + +def create_image_encoder(cfg: ImageEncoderCfg) -> nn.Module: + assert cfg.name + extra_kwargs = {} + if cfg.image_size is not None: + extra_kwargs['img_size'] = cfg.image_size + assert cfg.image_fmt in ('L', 'RGB') + model = timm.create_model(cfg.name, pretrained=cfg.pretrained, in_chans=1 if cfg.image_fmt == 'L' else 3, num_classes=0, global_pool='', **extra_kwargs) + return model + +class ImageEncoderTimm(nn.Module): + + def __init__(self, cfg: ImageEncoderCfg): + super().__init__() + self.trunk = create_image_encoder(cfg) + self.pool = None + self.head = None + + def forward(self, x): + x = self.trunk(x) + if self.pool is not None: + x = self.pool(x) + if self.head is not None: + x = self.head(x) + return x + +# File: pixparse-main/src/pixparse/models/text_decoder_hf.py +from typing import Optional +import torch +import transformers +from torch import nn as nn +from pixparse.models.config import TextDecoderCfg + +def create_text_decoder(cfg: TextDecoderCfg) -> transformers.BartForCausalLM: + assert cfg.name + config = transformers.AutoConfig.from_pretrained(cfg.name) + config.add_cross_attention = True + if False: + config.is_encoder_decoder = False + config.scale_embedding = True + config.add_final_layer_norm = True + if cfg.num_decoder_layers is not None: + config.decoder_layers = cfg.num_decoder_layers + if cfg.max_length is not None: + config.max_position_embeddings = cfg.max_length + if cfg.pretrained: + model = transformers.AutoModelForCausalLM.from_pretrained(cfg.name, config=config) + else: + model = transformers.AutoModelForCausalLM.from_config(config) + return model + +class TextDecoderHf(nn.Module): + + def __init__(self, cfg: TextDecoderCfg): + super().__init__() + self.trunk = create_text_decoder(cfg) + self.prepare_inputs_for_generation = self.prepare_inputs_for_inference + + def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, pad_token_id: int, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): + if past is not None: + past_key_values = past + attention_mask = input_ids.ne(pad_token_id).long() + if past_key_values is not None: + input_ids = input_ids[:, -1:] + output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} + return output + + def forward(self, input_ids, attention_mask: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, past_key_values: Optional[torch.Tensor]=None, use_cache: bool=None, output_attentions: Optional[torch.Tensor]=None, output_hidden_states: Optional[torch.Tensor]=None, return_dict: bool=None): + output = self.trunk(input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) + return output + +# File: pixparse-main/src/pixparse/task/__init__.py +from .task_cruller_pretrain import TaskCrullerPretrain, TaskCrullerPretrainCfg +from .task_cruller_finetune_RVLCDIP import TaskCrullerFinetuneRVLCDIP, TaskCrullerFinetuneRVLCDIPCfg +from .task_cruller_finetune_CORD import TaskCrullerFinetuneCORD, TaskCrullerFinetuneCORDCfg +from .task_cruller_finetune_xent import TaskCrullerFinetuneXent, TaskCrullerFinetuneXentCfg +from .task_cruller_finetune_docvqa import TaskCrullerFinetuneDOCVQA, TaskCrullerFinetuneDOCVQACfg +from .task_cruller_eval_ocr import TaskCrullerEvalOCR, TaskCrullerEvalOCRCfg +from .task_donut_eval_ocr import TaskDonutEvalOCR, TaskDonutEvalOCRCfg +from .task_cruller_eval_rvlcdip import TaskCrullerEvalRVLCDIP, TaskCrullerEvalRVLCDIPCfg +from .task_cruller_eval_cord import TaskCrullerEvalCORD, TaskCrullerEvalCORDCfg +from .task_cruller_eval_docvqa import TaskCrullerEvalDOCVQA, TaskCrullerEvalDOCVQACfg +from .task_factory import TaskFactory + +# File: pixparse-main/src/pixparse/task/task_cruller_eval_cord.py +import logging +from collections import OrderedDict +from dataclasses import dataclass, field +from functools import partial +from typing import Optional +import PIL +import torch +from torch import nn +import torch.nn.functional as F +from torchvision import transforms +from pixparse.data import preprocess_ocr_anno, preprocess_text_anno +from pixparse.framework import DeviceEnv, Monitor, TaskEval, TaskEvalCfg +from pixparse.models import Cruller, ModelCfg, get_model_config +from pixparse.tokenizers import TokenizerCfg, TokenizerHF +from pixparse.utils.json_utils import json2token, token2json +from pixparse.utils.json_utils import JSONParseEvaluator +import numpy as np +from ast import literal_eval +_logger = logging.getLogger(__name__) + +@dataclass +class TaskCrullerEvalCORDCfg(TaskEvalCfg): + model_name: Optional[str] = None + model: ModelCfg = field(default_factory=ModelCfg) + tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) + + def __post_init__(self): + if self.model_name: + model = get_model_config(self.model_name) + if model is None: + _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') + else: + self.model = model + else: + self.model_name = 'custom' + +class TaskCrullerEvalCORD(TaskEval): + + def __init__(self, cfg: TaskCrullerEvalCORDCfg, device_env: DeviceEnv, monitor: Monitor=None): + super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) + self.cfg = cfg + self.amp_dtype = None + if cfg.dtype is not None: + self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 + self.task_start_token = '' + self.prompt_end_token = self.task_start_token + self.max_position_embeddings = cfg.model.text_decoder.max_length + self.text_anno_fn = True + self.tokenizer = TokenizerHF(cfg.tokenizer) + self.state_dict = OrderedDict() + self.resume = False + cord_finetune_tokens = ['', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', ''] + special_tokens_from_pretrain = ['', ''] + preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno + self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) + self.model = Cruller(cfg.model) + newly_added_num_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) + if newly_added_num_from_pretrain > 0: + self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) + newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(cord_finetune_tokens))}) + self.vocab_size = len(self.tokenizer.trunk) + if newly_added_num > 0: + self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) + self.loss = nn.CrossEntropyLoss(ignore_index=-100) + self.has_no_sync = False + self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 + img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] + img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] + self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean + self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std + self.image_preprocess_eval = transforms.Compose([transforms.ToTensor(), transforms.Grayscale(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) + + def setup(self): + device = self.device_env.device + self.model.load_state_dict(self.resume_state_dict) + self.model.eval() + self.model.to(device) + self.all_ground_truths = [] + self.all_predictions = [] + self.acc_list = [] + self.evaluator = JSONParseEvaluator() + + def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): + if past is not None: + past_key_values = past + attention_mask = input_ids.ne(self.tokenizer.trunk.pad_token_id).long() + if past_key_values is not None: + input_ids = input_ids[:, -1:] + output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} + return output + + def prepare_for_evaluation(self, loaders): + loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} + return loaders + + def safe_image_transform(self, img): + try: + transformed_img = self.image_preprocess_eval(img) + except PIL.UnidentifiedImageError as e: + print(f'Encountered PIL issue {e}. Filtering...') + transformed_img = None + return transformed_img + + def text_input_to_target(self, text_input, ignore_id=-100): + target = text_input.clone() + target[target == self.tokenizer.trunk.pad_token_id] = ignore_id + prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) + slice_id = torch.nonzero(target == prompt_end_token_id).sum() + 1 + target[:slice_id] = ignore_id + return target + + def collate_fn(self, batch): + tokenizer_fn = lambda x: self.tokenizer.trunk(x, add_special_tokens=False, return_tensors='pt', max_length=512, padding='max_length', truncation=True).input_ids[0] + images = [item['image'] for item in batch] + raw_texts = [literal_eval(item['ground_truth'])['gt_parse'] for item in batch] + inputs_to_stack = [] + for text in raw_texts: + (tokens_from_json, _) = json2token(text, self.tokenizer.trunk.all_special_tokens, sort_json_key=False) + inputs_to_stack.append(tokenizer_fn(self.task_start_token + tokens_from_json + self.tokenizer.trunk.eos_token)) + text_inputs = torch.stack(inputs_to_stack) + targets = torch.stack([self.text_input_to_target(text) for text in text_inputs]) + transform = self.image_preprocess_eval + images = torch.stack([transform(img) for img in images]) + text_inputs = text_inputs[:, :-1] + targets = targets[:, 1:] + return {'image': images, 'label': text_inputs, 'text_target': targets} + + def step(self, batch): + metrics = {} + for (image, label) in zip(batch['image'], batch['label']): + decoded_gt = self.tokenizer.trunk.decode(label) + ground_truth = token2json(decoded_gt) + with torch.inference_mode(): + tensor_image = image.unsqueeze(0).to(self.device_env.device) + output = self.model.image_encoder(tensor_image) + current_string = '' + input_ids = torch.tensor(self.tokenizer.trunk.encode('', add_special_tokens=False)).unsqueeze(0).to(self.device_env.device) + max_steps = 512 + for step in range(max_steps): + inputs = self.prepare_inputs_for_inference(input_ids=input_ids, encoder_outputs=output) + decoder_outputs = self.model.text_decoder(**inputs) + probabilities = F.softmax(decoder_outputs['logits'], dim=-1) + next_token_id = torch.argmax(probabilities[0, -1]).item() + next_token = self.tokenizer.trunk.decode([next_token_id]) + current_string += next_token + if next_token == '': + break + input_ids = torch.tensor(self.tokenizer.trunk.encode(current_string, add_special_tokens=False)).unsqueeze(0).to(self.device_env.device) + predicted_json = token2json(current_string) + self.all_predictions.append(predicted_json) + self.all_ground_truths.append(ground_truth) + acc = self.evaluator.cal_acc(predicted_json, ground_truth) + self.acc_list.append(acc) + metrics['batch_accuracy'] = acc + return metrics + + def average_metrics(self, metrics: dict): + avg_accuracy = np.mean(self.acc_list) + f1 = self.evaluator.cal_f1(self.all_predictions, self.all_ground_truths) + self.all_ground_truths = [] + self.all_predictions = [] + self.acc_list = [] + return {'average_accuracy': avg_accuracy, 'f1_score': f1} + + def end(self): + pass + + def state_dict(self): + state_dicts = {} + state_dicts['model'] = self.model.state_dict() + return state_dicts + +# File: pixparse-main/src/pixparse/task/task_cruller_eval_docvqa.py +import logging +from collections import OrderedDict +from dataclasses import dataclass, field +from functools import partial +from typing import Optional +import PIL +import torch +from torch import nn +import torch.nn.functional as F +from torchvision import transforms +from pixparse.data import preprocess_ocr_anno, preprocess_text_anno +from pixparse.framework import DeviceEnv, Monitor, TaskEval, TaskEvalCfg +from pixparse.models import Cruller, ModelCfg, get_model_config +from pixparse.tokenizers import TokenizerCfg, TokenizerHF +from pixparse.utils.json_utils import json2token, token2json +from pixparse.utils.json_utils import JSONParseEvaluator +from pixparse.utils.metrics import average_normalized_levenshtein_similarity +import numpy as np +from ast import literal_eval +_logger = logging.getLogger(__name__) + +@dataclass +class TaskCrullerEvalDOCVQACfg(TaskEvalCfg): + model_name: Optional[str] = None + model: ModelCfg = field(default_factory=ModelCfg) + tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) + + def __post_init__(self): + if self.model_name: + model = get_model_config(self.model_name) + if model is None: + _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') + else: + self.model = model + else: + self.model_name = 'custom' + +class TaskCrullerEvalDOCVQA(TaskEval): + + def __init__(self, cfg: TaskCrullerEvalDOCVQACfg, device_env: DeviceEnv, monitor: Monitor=None): + super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) + self.cfg = cfg + self.amp_dtype = None + if cfg.dtype is not None: + self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 + self.task_start_token = '' + self.prompt_end_token = '' + self.max_position_embeddings = cfg.model.text_decoder.max_length + self.text_anno_fn = True + self.tokenizer = TokenizerHF(cfg.tokenizer) + self.state_dict = OrderedDict() + self.resume = False + docvqa_finetune_tokens = ['', self.task_start_token, self.prompt_end_token, '', '', ''] + special_tokens_from_pretrain = ['', ''] + preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno + self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) + self.model = Cruller(cfg.model) + newly_added_num_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) + if newly_added_num_from_pretrain > 0: + self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) + newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(docvqa_finetune_tokens))}) + self.vocab_size = len(self.tokenizer.trunk) + if newly_added_num > 0: + self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) + self.loss = nn.CrossEntropyLoss(ignore_index=-100) + self.has_no_sync = False + self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 + img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] + img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] + self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean + self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std + self.image_preprocess_eval = transforms.Compose([transforms.ToTensor(), transforms.Grayscale(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) + self.raw_predictions_test = dict() + + def setup(self): + device = self.device_env.device + self.model.load_state_dict(self.resume_state_dict) + self.model.eval() + self.model.to(device) + self.all_ground_truths = [] + self.all_predictions = [] + self.acc_list = [] + self.evaluator = JSONParseEvaluator() + + def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): + if past is not None: + past_key_values = past + attention_mask = input_ids.ne(self.tokenizer.trunk.pad_token_id).long() + if past_key_values is not None: + input_ids = input_ids[:, -1:] + output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} + return output + + def prepare_for_evaluation(self, loaders): + loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} + return loaders + + def safe_image_transform(self, img): + try: + transformed_img = self.image_preprocess_eval(img) + except PIL.UnidentifiedImageError as e: + print(f'Encountered PIL issue {e}. Filtering...') + transformed_img = None + return transformed_img + + def text_input_to_target(self, text_input, ignore_id=-100): + target = text_input.clone() + target[target == self.tokenizer.trunk.pad_token_id] = ignore_id + prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) + slice_id = torch.nonzero(target == prompt_end_token_id).sum() + 1 + target[:slice_id] = ignore_id + return target + + def collate_fn(self, batch): + question_ids = [] + image_ids = [] + images = [] + questions = [] + answers = [] + for item in batch: + question_ids.append(item['question_id']) + image_ids.append(item['image_id']) + images.append(item['image']) + questions.append(item['labels']['question']) + answers.append(item['labels']['answers']) + transform = self.image_preprocess_eval + images = torch.stack([transform(img) for img in images]) + return {'images': images, 'questions': questions, 'ground_truth_answers': answers, 'image_ids': image_ids, 'question_ids': question_ids} + + def step(self, batch): + metrics = {} + image_outputs = self.model.image_encoder(batch['images'].to(self.device_env.device)) + for (output, question, answers, question_id) in zip(image_outputs, batch['questions'], batch['ground_truth_answers'], batch['question_ids']): + self.all_ground_truths.append(answers) + with torch.inference_mode(): + current_string = self.task_start_token + '' + question + '' + '' + input_ids = torch.tensor(self.tokenizer.trunk.encode(current_string, add_special_tokens=False)).unsqueeze(0).to(self.device_env.device) + max_steps = 512 + for step in range(max_steps): + inputs = self.prepare_inputs_for_inference(input_ids=input_ids, encoder_outputs=output) + decoder_outputs = self.model.text_decoder(**inputs) + probabilities = F.softmax(decoder_outputs['logits'], dim=-1) + next_token_id = torch.argmax(probabilities[0, -1]).item() + next_token = self.tokenizer.trunk.decode([next_token_id]) + current_string += next_token + if next_token == '': + break + input_ids = torch.tensor(self.tokenizer.trunk.encode(current_string, add_special_tokens=False)).unsqueeze(0).to(self.device_env.device) + predicted_json = token2json(current_string) + if 'answer' in predicted_json: + self.all_predictions.append(predicted_json['answer']) + else: + self.all_predictions.append('') + return metrics + + def average_metrics(self, metrics: dict): + anls = average_normalized_levenshtein_similarity(ground_truth=self.all_ground_truths, predicted_answers=self.all_predictions) + return {'ANLS': anls} + + def end(self): + pass + + def state_dict(self): + state_dicts = {} + state_dicts['model'] = self.model.state_dict() + return state_dicts + +# File: pixparse-main/src/pixparse/task/task_cruller_eval_ocr.py +import logging +from dataclasses import dataclass, field +from functools import partial +from typing import Optional +import torch +import torchvision.transforms as transforms +from pixparse.framework import TaskEvalCfg, TaskEval, DeviceEnv, Monitor +from pixparse.models import Cruller, ModelCfg, get_model_config +from pixparse.tokenizers import TokenizerHF, TokenizerCfg +from pixparse.data import preprocess_text_anno +from pixparse.utils import get_ocr_metrics +from chug.common import LoaderBundle +_logger = logging.getLogger(__name__) +import time + +@dataclass +class TaskCrullerEvalOCRCfg(TaskEvalCfg): + model_name: Optional[str] = None + model: ModelCfg = field(default_factory=ModelCfg) + tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) + + def __post_init__(self): + if self.model_name: + model = get_model_config(self.model_name) + if model is None: + _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') + else: + self.model = model + else: + self.model_name = 'custom' + +class TaskCrullerEvalOCR(TaskEval): + + def __init__(self, cfg: TaskCrullerEvalOCRCfg, device_env: DeviceEnv, monitor: Monitor=None): + super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) + self.cfg = cfg + self.amp_dtype = None + if cfg.dtype is not None: + self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 + self.task_start_token = '' + self.prompt_end_token = self.task_start_token + self.max_position_embeddings = cfg.model.text_decoder.max_length + self.text_anno_fn = True + self.tokenizer = TokenizerHF(cfg.tokenizer) + special_tokens = ['', self.task_start_token, self.prompt_end_token] + newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens))}) + self.vocab_size = len(self.tokenizer.trunk) + preproc_fn = preprocess_text_anno + self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) + self.model = Cruller(cfg.model) + if newly_added_num > 0: + self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) + self.has_no_sync = False + self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 + img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] + img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] + self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean + self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std + self.image_preprocess_eval = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) + self.eval_metrics = {} + self.max_recursion_length = 1000 + + def time_and_log(func): + + def wrapper(self, *args, **kwargs): + start_time = time.time() + result = func(self, *args, **kwargs) + end_time = time.time() + execution_time = end_time - start_time + _logger.info(f'Executed method {func.__name__} in {execution_time:.2f} seconds') + return result + return wrapper + + def setup(self): + device = self.device_env.device + self.model.load_state_dict(self.resume_state_dict) + self.model.eval() + self.model.to(device) + + def prepare_for_evaluation(self, loaders: dict[str, LoaderBundle]) -> dict[str, LoaderBundle]: + loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} + return loaders + + @time_and_log + def step(self, sample): + metrics = {} + (image_input, text_input, text_target) = sample + text_input = [item[0] for item in text_input] + text_input = torch.stack(text_input, dim=0).to(self.device_env.device, non_blocking=True) + text_target = [item[0] for item in text_target] + text_target = torch.stack(text_target, dim=0).to(self.device_env.device, non_blocking=True) + image_input = image_input.to(self.device_env.device, non_blocking=True) + (ocr_metrics, _) = get_ocr_metrics(model=self.model, tokenizer=self.tokenizer, image_input=image_input, text_input=text_target, device_env=self.device_env, max_recursion_length=self.max_recursion_length, prompt_token=self.task_start_token) + metrics['ocr_reconstruction'] = ocr_metrics + return metrics + + def average_metrics(self, metrics: dict): + wer_sum = 0 + cer_sum = 0 + for batch_metrics in metrics.values(): + wer_sum += batch_metrics['ocr_reconstruction']['wer'] + cer_sum += batch_metrics['ocr_reconstruction']['cer'] + num_batches = len(metrics) + average_wer = wer_sum / num_batches + average_cer = cer_sum / num_batches + return {'ocr_reconstruction': {'wer': average_wer, 'cer': average_cer}} + + def end(self): + pass + + def state_dict(self): + state_dicts = {} + state_dicts['model'] = self.model.state_dict() + return state_dicts + +# File: pixparse-main/src/pixparse/task/task_cruller_eval_rvlcdip.py +import logging +from collections import OrderedDict +from dataclasses import dataclass, field +from functools import partial +from typing import Optional +import PIL +import torch +import torch.nn.functional as F +from torchvision import transforms +from pixparse.data import preprocess_ocr_anno, preprocess_text_anno +from pixparse.framework import DeviceEnv, Monitor, TaskEval, TaskEvalCfg +from pixparse.models import Cruller, ModelCfg, get_model_config +from pixparse.tokenizers import TokenizerCfg, TokenizerHF +_logger = logging.getLogger(__name__) + +@dataclass +class TaskCrullerEvalRVLCDIPCfg(TaskEvalCfg): + model_name: Optional[str] = None + model: ModelCfg = field(default_factory=ModelCfg) + tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) + + def __post_init__(self): + if self.model_name: + model = get_model_config(self.model_name) + if model is None: + _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') + else: + self.model = model + else: + self.model_name = 'custom' + +class TaskCrullerEvalRVLCDIP(TaskEval): + + def __init__(self, cfg: TaskCrullerEvalRVLCDIPCfg, device_env: DeviceEnv, monitor: Monitor=None): + super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) + self.cfg = cfg + self.amp_dtype = None + if cfg.dtype is not None: + self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 + self.task_start_token = '' + self.prompt_end_token = self.task_start_token + self.max_position_embeddings = cfg.model.text_decoder.max_length + self.text_anno_fn = True + self.tokenizer = TokenizerHF(cfg.tokenizer) + self.state_dict = OrderedDict() + self.resume = False + special_tokens = ['', self.task_start_token, self.prompt_end_token, '', '', '', '', '', '', '
', '', '', '', '', '', '', '', '', '', '', ''] + newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens))}) + self.has_no_sync = False + self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 + self.int2str = {0: 'letter', 1: 'form', 2: 'email', 3: 'handwritten', 4: 'advertisement', 5: 'scientific_report', 6: 'scientific_publication', 7: 'specification', 8: 'file_folder', 9: 'news_article', 10: 'budget', 11: 'invoice', 12: 'presentation', 13: 'questionnaire', 14: 'resume', 15: 'memo'} + self.vocab_size = len(self.tokenizer.trunk) + preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno + self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) + self.model = Cruller(cfg.model) + if newly_added_num > 0: + self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) + img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] + img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] + self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean + self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std + self.image_preprocess_eval = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) + + def setup(self): + device = self.device_env.device + self.model.load_state_dict(self.resume_state_dict) + self.model.eval() + self.model.to(device) + + def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): + if past is not None: + past_key_values = past + attention_mask = input_ids.ne(self.tokenizer.trunk.pad_token_id).long() + if past_key_values is not None: + input_ids = input_ids[:, -1:] + output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} + return output + + def prepare_for_evaluation(self, loaders): + loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} + return loaders + + def safe_image_transform(self, img): + try: + transformed_img = self.image_preprocess_eval(img) + except PIL.UnidentifiedImageError as e: + print(f'Encountered PIL issue {e}. Filtering...') + transformed_img = None + return transformed_img + + def collate_fn(self, batch): + images = [item['image'] for item in batch if item is not None] + labels = [item['label'] for item in batch if item is not None] + if len(images) == 0: + return None + transformed_images = [self.safe_image_transform(img) for img in images] + valid_indices = [i for (i, img) in enumerate(transformed_images) if img is not None] + images = torch.stack([transformed_images[i] for i in valid_indices]) + labels = torch.tensor([labels[i] for i in valid_indices], dtype=torch.int64) + return {'image': images, 'label': labels} + + def step(self, sample): + metrics = {} + metrics['classification'] = dict() + correct_samples = 0 + ground_truths = [self.int2str[int(gt)] for gt in sample['label']] + already_counted = [False] * len(ground_truths) + with torch.inference_mode(): + tensor_images = torch.stack([im for im in sample['image']]).to(self.device_env.device) + output = self.model.image_encoder(tensor_images) + current_strings = ['' for _ in range(tensor_images.shape[0])] + input_ids = torch.tensor(self.tokenizer.trunk.encode('')[1]).unsqueeze(0).repeat(tensor_images.shape[0], 1).to(self.device_env.device) + max_steps = 5 + for step in range(max_steps): + inputs = self.prepare_inputs_for_inference(input_ids=input_ids, encoder_outputs=output) + decoder_outputs = self.model.text_decoder(**inputs) + probabilities = F.softmax(decoder_outputs['logits'], dim=-1) + next_token_ids = torch.argmax(probabilities, dim=-1) + for idx in range(next_token_ids.shape[0]): + next_token_id = next_token_ids[idx, -1].item() + next_token = self.tokenizer.trunk.decode([next_token_id]) + current_strings[idx] += next_token + if next_token == '': + generated_label = current_strings[idx].replace('', '').replace('', '').replace('', '').strip() + ground_truth_label = '<' + ground_truths[idx] + '/>' + if generated_label == ground_truth_label and (not already_counted[idx]): + correct_samples += 1 + already_counted[idx] = True + input_ids = torch.tensor([self.tokenizer.trunk.encode(s)[1:] for s in current_strings]).to(self.device_env.device) + metrics['classification']['correct_samples'] = correct_samples + metrics['classification']['n_valid_samples'] = len(sample['label']) + return metrics + + def average_metrics(self, metrics: dict): + correct_samples = 0 + total_samples = 0 + for batch_metrics in metrics.values(): + correct_samples += batch_metrics['classification']['correct_samples'] + total_samples += batch_metrics['classification']['n_valid_samples'] + average_acc = correct_samples / total_samples + return {'classification': {'accuracy': average_acc}} + + def end(self): + pass + + def state_dict(self): + state_dicts = {} + state_dicts['model'] = self.model.state_dict() + return state_dicts + +# File: pixparse-main/src/pixparse/task/task_cruller_finetune_CORD.py +import logging +from contextlib import nullcontext +from dataclasses import dataclass, field, asdict +from functools import partial +from typing import Optional, List, Any +import torch +from torch.utils.data import DataLoader +import torch.nn as nn +import torch.nn.functional as F +import torchvision.transforms as transforms +from torchvision.transforms import functional as transformsF +from torchvision.transforms import Lambda +import timm +import timm.utils +from timm.optim import create_optimizer_v2 +from timm.scheduler import create_scheduler_v2 +from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor +from pixparse.models import Cruller, ModelCfg, get_model_config +from pixparse.tokenizers import TokenizerHF, TokenizerCfg +from pixparse.data import preprocess_ocr_anno, preprocess_text_anno +from timm.layers import SelectAdaptivePool2d +from typing import Dict, List +from collections import OrderedDict +from ast import literal_eval +from datasets import load_dataset +from pixparse.utils.json_utils import json2token, token2json +from transformers import DonutProcessor, VisionEncoderDecoderModel +from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from pixparse.utils.json_utils import JSONParseEvaluator +_logger = logging.getLogger(__name__) + +@dataclass +class TaskCrullerFinetuneCORDCfg(TaskTrainCfg): + model_name: Optional[str] = None + model: ModelCfg = field(default_factory=ModelCfg) + tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) + + def __post_init__(self): + if self.model_name: + model = get_model_config(self.model_name) + if model is None: + _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') + else: + self.model = model + else: + self.model_name = 'custom' + +def prepare_inputs_for_inference(tokenizer, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): + if past is not None: + past_key_values = past + attention_mask = input_ids.ne(tokenizer.trunk.pad_token_id).long() + if past_key_values is not None: + input_ids = input_ids[:, -1:] + output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} + return output + +class TaskCrullerFinetuneCORD(TaskTrain): + + def __init__(self, cfg: TaskCrullerFinetuneCORDCfg, device_env: DeviceEnv, monitor: Monitor=None): + super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) + self.cfg = cfg + self.amp_dtype = None + if cfg.dtype is not None: + self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 + self.task_start_token = '' + self.prompt_end_token = self.task_start_token + self.max_position_embeddings = cfg.model.text_decoder.max_length + self.text_anno_fn = True + self.tokenizer = TokenizerHF(cfg.tokenizer) + self.state_dict = OrderedDict() + self.resume = False + self.special_tokens_finetune = ['', self.task_start_token, self.prompt_end_token, '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', ''] + preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno + self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) + '' + self.finetune_donut_weights = False + _logger.info(f'Finetuning donut weights? {self.finetune_donut_weights}') + if self.finetune_donut_weights: + self.model = VisionEncoderDecoderModel.from_pretrained('naver-clova-ix/donut-base') + else: + self.model = Cruller(cfg.model) + special_tokens_from_pretrain = ['', ''] + num_tokens_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) + if num_tokens_from_pretrain > 0: + self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) + self.loss = nn.CrossEntropyLoss(ignore_index=-100) + self.has_no_sync = False + if self.finetune_donut_weights: + self.num_image_chs = 3 + else: + self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 + if self.finetune_donut_weights: + img_mean = IMAGENET_DEFAULT_MEAN + img_std = IMAGENET_DEFAULT_STD + else: + img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] + img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] + self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean + self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std + if self.finetune_donut_weights: + image_size = (1280, 960) + color_transform = Lambda(lambda x: x) + else: + image_size = cfg.model.image_encoder.image_size + color_transform = transforms.Grayscale() + self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), color_transform, transforms.Resize(image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) + + def train_setup(self, num_batches_per_interval: int): + if self.finetune_donut_weights: + self.newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(self.special_tokens_finetune))}) + self.vocab_size = len(self.tokenizer.trunk) + if self.newly_added_num > 0: + self.model.decoder.resize_token_embeddings(len(self.tokenizer.trunk)) + else: + _logger.info(f'Resuming from existing checkpoint. ') + self.state_dict = {k.replace('module.', ''): v for (k, v) in self.state_dict.items()} + self.model.load_state_dict(self.state_dict) + self.newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(self.special_tokens_finetune))}) + self.vocab_size = len(self.tokenizer.trunk) + if self.newly_added_num > 0: + self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) + device = self.device_env.device + self.model.to(device) + if self.device_env.world_size > 1: + self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) + self.has_no_sync = hasattr(self.model, 'no_sync') + opt_kwargs = {} + if self.cfg.opt.betas is not None: + opt_kwargs['betas'] = self.cfg.opt.betas + if self.cfg.opt.momentum is not None: + opt_kwargs['momentum'] = self.cfg.opt.momentum + self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) + if self.cfg.amp: + self.scaler = timm.utils.NativeScaler() + self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) + else: + self.scaler = None + self.autocast = nullcontext + self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps + (self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) + self.scheduler.step_update(0) + + def text_input_to_target(self, text_input, ignore_id=-100): + target = text_input.clone() + target[target == self.tokenizer.trunk.pad_token_id] = ignore_id + prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) + slice_id = torch.nonzero(target == prompt_end_token_id).sum() + 1 + target[:slice_id] = ignore_id + return target + + def collate_fn(self, batch): + tokenizer_fn = lambda x: self.tokenizer.trunk(x, add_special_tokens=False, return_tensors='pt', max_length=512, padding='max_length', truncation=True).input_ids[0] + images = [item['image'] for item in batch] + raw_texts = [literal_eval(item['ground_truth'])['gt_parse'] for item in batch] + inputs_to_stack = [] + for text in raw_texts: + (tokens_from_json, _) = json2token(text, self.tokenizer.trunk.all_special_tokens, sort_json_key=False) + inputs_to_stack.append(tokenizer_fn(self.task_start_token + tokens_from_json + self.tokenizer.trunk.eos_token)) + text_inputs = torch.stack(inputs_to_stack) + targets = torch.stack([self.text_input_to_target(text) for text in text_inputs]) + transform = self.image_preprocess_train + images = torch.stack([transform(img) for img in images]) + text_inputs = text_inputs[:, :-1] + targets = targets[:, 1:] + return {'image': images, 'label': text_inputs, 'text_target': targets} + + def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: + image_input = sample['image'] + label = sample['label'] + text_target = sample['text_target'] + result = {} + image_input = image_input.to(self.device_env.device, non_blocking=True) + label = label.to(self.device_env.device, non_blocking=True) + text_target = text_target.to(self.device_env.device, non_blocking=True) + accum_steps = self.cfg.opt.grad_accum_steps + need_update = (self.interval_batch_idx + 1) % accum_steps == 0 + + def _forward(): + with self.autocast(): + if self.finetune_donut_weights: + output = self.model(pixel_values=image_input, decoder_input_ids=label, labels=text_target) + logits = output['logits'] + else: + output = self.model(image_input, label) + logits = output['logits'] + loss = self.loss(logits.view(-1, self.vocab_size), text_target.view(-1)) + if accum_steps > 1: + loss /= accum_steps + return loss + + def _backward(_loss): + if self.scaler is not None: + self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) + else: + _loss.backward() + if need_update: + if self.cfg.opt.clip_grad_value is not None: + timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) + self.optimizer.step() + if self.has_no_sync and (not need_update): + with self.model.no_sync(): + loss = _forward() + _backward(loss) + else: + loss = _forward() + _backward(loss) + self.batch_idx += 1 + self.interval_batch_idx += 1 + if self.step % 100 == 0: + self.monitor.log_step('finetune', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=None, eval_data=None) + if not need_update: + return result + self.step += 1 + self.scheduler.step_update(self.step) + self.optimizer.zero_grad() + + def state_dict(self): + state_dicts = {} + state_dicts['model'] = self.model.state_dict() + state_dicts['tokenizer'] = self.tokenizer.state_dict() + return state_dicts + +# File: pixparse-main/src/pixparse/task/task_cruller_finetune_RVLCDIP.py +import logging +from contextlib import nullcontext +from dataclasses import dataclass, field, asdict +from functools import partial +from typing import Optional, List, Any +import torch +import torch.nn as nn +import torchvision.transforms as transforms +import timm +import timm.utils +from timm.optim import create_optimizer_v2 +from timm.scheduler import create_scheduler_v2 +from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor +from pixparse.models import Cruller, ModelCfg, get_model_config +from pixparse.tokenizers import TokenizerHF, TokenizerCfg +from pixparse.data import preprocess_ocr_anno, preprocess_text_anno +from timm.layers import SelectAdaptivePool2d +from typing import Dict, List +from collections import OrderedDict +_logger = logging.getLogger(__name__) + +class GetCLSToken(nn.Module): + + def forward(self, x): + return x[:, 0, :] + +@dataclass +class TaskCrullerFinetuneRVLCDIPCfg(TaskTrainCfg): + model_name: Optional[str] = None + model: ModelCfg = field(default_factory=ModelCfg) + tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) + + def __post_init__(self): + if self.model_name: + model = get_model_config(self.model_name) + if model is None: + _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') + else: + self.model = model + else: + self.model_name = 'custom' + +class TaskCrullerFinetuneRVLCDIP(TaskTrain): + + def __init__(self, cfg: TaskCrullerFinetuneRVLCDIPCfg, device_env: DeviceEnv, monitor: Monitor=None): + super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) + self.cfg = cfg + self.amp_dtype = None + if cfg.dtype is not None: + self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 + self.task_start_token = '' + self.prompt_end_token = self.task_start_token + self.max_position_embeddings = cfg.model.text_decoder.max_length + self.text_anno_fn = True + self.tokenizer = TokenizerHF(cfg.tokenizer) + self.state_dict = OrderedDict() + self.resume = False + self.special_tokens_finetune = ['', self.task_start_token, self.prompt_end_token, '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', ''] + self.int2str = {0: 'letter', 1: 'form', 2: 'email', 3: 'handwritten', 4: 'advertisement', 5: 'scientific_report', 6: 'scientific_publication', 7: 'specification', 8: 'file_folder', 9: 'news_article', 10: 'budget', 11: 'invoice', 12: 'presentation', 13: 'questionnaire', 14: 'resume', 15: 'memo'} + preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno + self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) + self.model = Cruller(cfg.model) + special_tokens_from_pretrain = ['', ''] + num_tokens_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) + if num_tokens_from_pretrain > 0: + self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) + self.loss = nn.CrossEntropyLoss(ignore_index=-100) + self.has_no_sync = False + self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 + img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] + img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] + self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean + self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std + self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) + + def train_setup(self, num_batches_per_interval: int): + _logger.info(f'Resuming from existing checkpoint. ') + self.state_dict = {k.replace('module.', ''): v for (k, v) in self.state_dict.items()} + self.model.load_state_dict(self.state_dict) + self.newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(self.special_tokens_finetune))}) + self.vocab_size = len(self.tokenizer.trunk) + if self.newly_added_num > 0: + self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) + device = self.device_env.device + self.model.to(device) + if self.device_env.world_size > 1: + self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) + self.has_no_sync = hasattr(self.model, 'no_sync') + opt_kwargs = {} + if self.cfg.opt.betas is not None: + opt_kwargs['betas'] = self.cfg.opt.betas + if self.cfg.opt.momentum is not None: + opt_kwargs['momentum'] = self.cfg.opt.momentum + self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) + if self.cfg.amp: + self.scaler = timm.utils.NativeScaler() + self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) + else: + self.scaler = None + self.autocast = nullcontext + self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps + (self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) + self.scheduler.step_update(0) + + def text_input_to_target(self, text_input, ignore_id=-100): + target = text_input.clone() + target[target == self.tokenizer.trunk.pad_token_id] = ignore_id + prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) + target[:torch.nonzero(target == prompt_end_token_id).sum() + 1] = ignore_id + return target + + def collate_fn(self, batch): + images = [item['image'] for item in batch] + labels = [item['label'] for item in batch] + tokenizer_fn = lambda x: self.tokenizer.trunk(x, add_special_tokens=False, return_tensors='pt', max_length=5, padding='max_length', truncation=True).input_ids[0] + labels_tokens = [tokenizer_fn(self.task_start_token + '<' + self.int2str[label] + '/>' + self.tokenizer.trunk.eos_token) for label in labels] + transform = self.image_preprocess_train + images = torch.stack([transform(img) for img in images]) + labels = torch.stack(labels_tokens) + targets = torch.stack([self.text_input_to_target(text) for text in labels]) + labels = labels[:, :-1] + targets = targets[:, 1:] + return {'image': images, 'label': labels, 'text_target': targets} + + def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: + image_input = sample['image'] + label = sample['label'] + text_target = sample['text_target'] + result = {} + image_input = image_input.to(self.device_env.device, non_blocking=True) + label = label.to(self.device_env.device, non_blocking=True) + text_target = text_target.to(self.device_env.device, non_blocking=True) + accum_steps = self.cfg.opt.grad_accum_steps + need_update = (self.interval_batch_idx + 1) % accum_steps == 0 + + def _forward(): + with self.autocast(): + output = self.model(image_input, label) + logits = output['logits'] + loss = self.loss(logits.view(-1, self.vocab_size), text_target.view(-1)) + if accum_steps > 1: + loss /= accum_steps + return loss + + def _backward(_loss): + if self.scaler is not None: + self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) + else: + _loss.backward() + if need_update: + if self.cfg.opt.clip_grad_value is not None: + timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) + self.optimizer.step() + if self.has_no_sync and (not need_update): + with self.model.no_sync(): + loss = _forward() + _backward(loss) + else: + loss = _forward() + _backward(loss) + self.batch_idx += 1 + self.interval_batch_idx += 1 + if self.step % self.eval_frequency == 0: + self.monitor.log_step('finetune', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=None, eval_data=None) + if not need_update: + return result + self.step += 1 + self.scheduler.step_update(self.step) + self.optimizer.zero_grad() + +# File: pixparse-main/src/pixparse/task/task_cruller_finetune_docvqa.py +import logging +from contextlib import nullcontext +from dataclasses import dataclass, field, asdict +from functools import partial +from typing import Optional, List, Any +import torch +from torch.utils.data import DataLoader +import torch.nn as nn +import torch.nn.functional as F +import torchvision.transforms as transforms +from torchvision.transforms import functional as transformsF +from torchvision.transforms import Lambda +import timm +import timm.utils +from timm.optim import create_optimizer_v2 +from timm.scheduler import create_scheduler_v2 +from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor +from pixparse.models import Cruller, ModelCfg, get_model_config +from pixparse.tokenizers import TokenizerHF, TokenizerCfg +from pixparse.data import preprocess_ocr_anno, preprocess_text_anno +from timm.layers import SelectAdaptivePool2d +from typing import Dict, List +from collections import OrderedDict +from ast import literal_eval +from datasets import load_dataset +from pixparse.utils.json_utils import json2token, token2json +from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from pixparse.utils.json_utils import JSONParseEvaluator +import numpy as np +_logger = logging.getLogger(__name__) + +@dataclass +class TaskCrullerFinetuneDOCVQACfg(TaskTrainCfg): + model_name: Optional[str] = None + model: ModelCfg = field(default_factory=ModelCfg) + tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) + + def __post_init__(self): + if self.model_name: + model = get_model_config(self.model_name) + if model is None: + _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') + else: + self.model = model + else: + self.model_name = 'custom' + +class TaskCrullerFinetuneDOCVQA(TaskTrain): + + def __init__(self, cfg: TaskCrullerFinetuneDOCVQACfg, device_env: DeviceEnv, monitor: Monitor=None): + super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) + self.cfg = cfg + self.amp_dtype = None + if cfg.dtype is not None: + self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 + self.task_start_token = '' + self.prompt_end_token = '' + self.max_position_embeddings = cfg.model.text_decoder.max_length + self.text_anno_fn = True + self.tokenizer = TokenizerHF(cfg.tokenizer) + self.state_dict = OrderedDict() + self.resume = False + self.special_tokens_finetune = ['', self.task_start_token, self.prompt_end_token, '', '', ''] + preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno + self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) + self.model = Cruller(cfg.model) + special_tokens_from_pretrain = ['', ''] + num_tokens_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) + if num_tokens_from_pretrain > 0: + self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) + self.loss = nn.CrossEntropyLoss(ignore_index=-100) + self.has_no_sync = False + self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 + img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] + img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] + self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean + self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std + image_size = cfg.model.image_encoder.image_size + color_transform = transforms.Grayscale() + self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), color_transform, transforms.Resize(image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) + + def train_setup(self, num_batches_per_interval: int): + _logger.info(f'Resuming from existing checkpoint. ') + self.state_dict = {k.replace('module.', ''): v for (k, v) in self.state_dict.items()} + self.model.load_state_dict(self.state_dict) + self.newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(self.special_tokens_finetune))}) + self.vocab_size = len(self.tokenizer.trunk) + if self.newly_added_num > 0: + self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) + device = self.device_env.device + self.model.to(device) + if self.device_env.world_size > 1: + self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) + self.has_no_sync = hasattr(self.model, 'no_sync') + opt_kwargs = {} + if self.cfg.opt.betas is not None: + opt_kwargs['betas'] = self.cfg.opt.betas + if self.cfg.opt.momentum is not None: + opt_kwargs['momentum'] = self.cfg.opt.momentum + self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) + if self.cfg.amp: + self.scaler = timm.utils.NativeScaler() + self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) + else: + self.scaler = None + self.autocast = nullcontext + self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps + (self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) + self.scheduler.step_update(0) + + def text_input_to_target(self, text_input, ignore_id=-100): + target = text_input.clone() + target[target == self.tokenizer.trunk.pad_token_id] = ignore_id + prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) + slice_id = torch.nonzero(target == prompt_end_token_id).sum() + 1 + target[:slice_id] = ignore_id + return target + + def collate_fn(self, batch): + tokenizer_fn = lambda x: self.tokenizer.trunk(x, add_special_tokens=False, return_tensors='pt', max_length=512, padding='max_length', truncation=True).input_ids[0] + images = [item['image'] for item in batch] + q_and_as = [np.random.choice(item['labels']) for item in batch] + inputs_to_stack = [] + for text in q_and_as: + inputs_to_stack.append(tokenizer_fn('' + text + self.tokenizer.trunk.eos_token)) + text_inputs = torch.stack(inputs_to_stack) + targets = torch.stack([self.text_input_to_target(text) for text in text_inputs]) + transform = self.image_preprocess_train + images = torch.stack([transform(img) for img in images]) + text_inputs = text_inputs[:, :-1] + targets = targets[:, 1:] + return {'image': images, 'label': text_inputs, 'text_target': targets} + + def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: + image_input = sample['image'] + label = sample['label'] + text_target = sample['text_target'] + result = {} + image_input = image_input.to(self.device_env.device, non_blocking=True) + label = label.to(self.device_env.device, non_blocking=True) + text_target = text_target.to(self.device_env.device, non_blocking=True) + accum_steps = self.cfg.opt.grad_accum_steps + need_update = (self.interval_batch_idx + 1) % accum_steps == 0 + + def _forward(): + with self.autocast(): + output = self.model(image_input, label) + logits = output['logits'] + loss = self.loss(logits.view(-1, self.vocab_size), text_target.view(-1)) + if accum_steps > 1: + loss /= accum_steps + return loss + + def _backward(_loss): + if self.scaler is not None: + self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) + else: + _loss.backward() + if need_update: + if self.cfg.opt.clip_grad_value is not None: + timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) + self.optimizer.step() + if self.has_no_sync and (not need_update): + with self.model.no_sync(): + loss = _forward() + _backward(loss) + else: + loss = _forward() + _backward(loss) + self.batch_idx += 1 + self.interval_batch_idx += 1 + if self.step % 100 == 0: + self.monitor.log_step('finetune', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=None, eval_data=None) + if not need_update: + return result + self.step += 1 + self.scheduler.step_update(self.step) + self.optimizer.zero_grad() + + def state_dict(self): + state_dicts = {} + state_dicts['model'] = self.model.state_dict() + state_dicts['tokenizer'] = self.tokenizer.state_dict() + return state_dicts + +# File: pixparse-main/src/pixparse/task/task_cruller_finetune_xent.py +import logging +from contextlib import nullcontext +from dataclasses import dataclass, field, asdict +from functools import partial +from typing import Optional, List, Any +import torch +import torch.nn as nn +import torchvision.transforms as transforms +import timm +import timm.utils +from timm.optim import create_optimizer_v2 +from timm.scheduler import create_scheduler_v2 +from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor +from pixparse.models import Cruller, ModelCfg, get_model_config +from pixparse.tokenizers import TokenizerHF, TokenizerCfg +from pixparse.data import preprocess_ocr_anno, preprocess_text_anno +from timm.layers import SelectAdaptivePool2d +from typing import Dict, List +from collections import OrderedDict +_logger = logging.getLogger(__name__) + +class GetCLSToken(nn.Module): + + def forward(self, x): + return x[:, 0, :] + +@dataclass +class TaskCrullerFinetuneXentCfg(TaskTrainCfg): + model_name: Optional[str] = None + model: ModelCfg = field(default_factory=ModelCfg) + tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) + + def __post_init__(self): + if self.model_name: + model = get_model_config(self.model_name) + if model is None: + _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') + else: + self.model = model + else: + self.model_name = 'custom' + +class TaskCrullerFinetuneXent(TaskTrain): + + def __init__(self, cfg: TaskCrullerFinetuneXentCfg, device_env: DeviceEnv, monitor: Monitor=None): + super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) + self.cfg = cfg + self.amp_dtype = None + if cfg.dtype is not None: + self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 + self.task_start_token = '' + self.prompt_end_token = self.task_start_token + self.max_position_embeddings = cfg.model.text_decoder.max_length + self.text_anno_fn = False + self.tokenizer = TokenizerHF(cfg.tokenizer) + self.state_dict = OrderedDict() + self.resume = False + special_tokens = ['', self.task_start_token, self.prompt_end_token] + newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens))}) + self.vocab_size = len(self.tokenizer.trunk) + preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno + self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) + self.model = Cruller(cfg.model) + if newly_added_num > 0: + self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) + self.loss = nn.CrossEntropyLoss(ignore_index=-100) + self.has_no_sync = False + self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 + img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] + img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] + self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean + self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std + self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) + + def train_setup(self, num_batches_per_interval: int): + if self.resume: + _logger.info(f'Resuming from existing checkpoint. ') + self.state_dict = {k.replace('module.', ''): v for (k, v) in self.state_dict.items()} + self.model.load_state_dict(self.state_dict) + self.model = nn.Sequential(OrderedDict([('encoder', self.model.image_encoder), ('token_pool', GetCLSToken()), ('final_fc', nn.Linear(768, 16))])) + device = self.device_env.device + print(f'Local rank for this process: {self.device_env.local_rank}') + device = torch.device(f'cuda:{self.device_env.local_rank}') + self.model.to(device) + if self.device_env.world_size > 1: + self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) + self.has_no_sync = hasattr(self.model, 'no_sync') + opt_kwargs = {} + if self.cfg.opt.betas is not None: + opt_kwargs['betas'] = self.cfg.opt.betas + if self.cfg.opt.momentum is not None: + opt_kwargs['momentum'] = self.cfg.opt.momentum + self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) + if self.cfg.amp: + self.scaler = timm.utils.NativeScaler() + self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) + else: + self.scaler = None + self.autocast = nullcontext + self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps + (self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) + self.scheduler.step_update(0) + + def collate_fn(self, batch): + images = [item['image'] for item in batch] + labels = [item['label'] for item in batch] + transform = self.image_preprocess_train + images = torch.stack([transform(img) for img in images]) + labels = torch.tensor(labels, dtype=torch.int64) + return {'image': images, 'label': labels} + + def train_interval_start(self): + self.optimizer.zero_grad() + self.interval_batch_idx = 0 + + def train_interval_end(self): + self.monitor.log_phase('finetune', self.interval_idx) + self.interval_idx += 1 + + def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: + image_input = sample['image'] + label = sample['label'] + result = {} + image_input = image_input.to(self.device_env.device, non_blocking=True) + label = label.to(self.device_env.device, non_blocking=True) + accum_steps = self.cfg.opt.grad_accum_steps + need_update = (self.interval_batch_idx + 1) % accum_steps == 0 + + def _forward(): + with self.autocast(): + outputs = self.model(image_input) + loss = self.loss(outputs, label) + if accum_steps > 1: + loss /= accum_steps + return loss + + def _backward(_loss): + if self.scaler is not None: + self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) + else: + _loss.backward() + if need_update: + if self.cfg.opt.clip_grad_value is not None: + timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) + self.optimizer.step() + if self.has_no_sync and (not need_update): + with self.model.no_sync(): + loss = _forward() + _backward(loss) + else: + loss = _forward() + _backward(loss) + self.batch_idx += 1 + self.interval_batch_idx += 1 + if self.step % self.eval_frequency == 0: + self.monitor.log_step('finetune', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=None, eval_data=None) + if not need_update: + return result + self.step += 1 + self.scheduler.step_update(self.step) + self.optimizer.zero_grad() + + def eval_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: + pass + + def get_current_lr(self): + lrl = [param_group['lr'] for param_group in self.optimizer.param_groups] + lr = sum(lrl) / len(lrl) + return lr + +# File: pixparse-main/src/pixparse/task/task_cruller_pretrain.py +import logging +from contextlib import nullcontext +from dataclasses import dataclass, field, asdict +from functools import partial +from typing import Optional, List, Any +import torch +import torch.nn as nn +import torchvision.transforms as transforms +import timm +import timm.utils +from timm.optim import create_optimizer_v2 +from timm.scheduler import create_scheduler_v2 +from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor +from pixparse.models import Cruller, ModelCfg, get_model_config +from pixparse.tokenizers import TokenizerHF, TokenizerCfg +from pixparse.data import preprocess_ocr_anno, preprocess_text_anno +from pixparse.utils.ocr_utils import get_ocr_metrics +_logger = logging.getLogger(__name__) + +@dataclass +class TaskCrullerPretrainCfg(TaskTrainCfg): + model_name: Optional[str] = None + model: ModelCfg = field(default_factory=ModelCfg) + tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) + + def __post_init__(self): + if self.model_name: + model = get_model_config(self.model_name) + if model is None: + _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') + else: + self.model = model + else: + self.model_name = 'custom' + +class TaskCrullerPretrain(TaskTrain): + + def __init__(self, cfg: TaskCrullerPretrainCfg, device_env: DeviceEnv, monitor: Monitor=None): + super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) + self.cfg = cfg + self.amp_dtype = None + if cfg.dtype is not None: + self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 + self.task_start_token = '' + self.prompt_end_token = self.task_start_token + self.max_position_embeddings = cfg.model.text_decoder.max_length + self.text_anno_fn = False + self.tokenizer = TokenizerHF(cfg.tokenizer) + special_tokens = ['', self.task_start_token, self.prompt_end_token] + newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens))}) + self.vocab_size = len(self.tokenizer.trunk) + preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno + self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) + self.model = Cruller(cfg.model) + if newly_added_num > 0: + self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) + self.loss = nn.CrossEntropyLoss(ignore_index=-100) + self.has_no_sync = False + self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 + img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] + img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] + self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean + self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std + self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) + self.image_preprocess_eval = None + self.train_metrics = {} + self.eval_metrics = {} + self.max_recursion_length = 1000 + + def train_setup(self, num_batches_per_interval: int): + device = self.device_env.device + self.model.to(device) + if self.device_env.world_size > 1: + self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) + self.has_no_sync = hasattr(self.model, 'no_sync') + opt_kwargs = {} + if self.cfg.opt.betas is not None: + opt_kwargs['betas'] = self.cfg.opt.betas + if self.cfg.opt.momentum is not None: + opt_kwargs['momentum'] = self.cfg.opt.momentum + self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) + if self.cfg.amp: + self.scaler = timm.utils.NativeScaler() + self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) + else: + self.scaler = None + self.autocast = nullcontext + self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps + (self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) + self.scheduler.step_update(0) + + def train_interval_start(self): + self.optimizer.zero_grad() + self.interval_batch_idx = 0 + + def train_interval_end(self): + self.monitor.log_phase('train', self.interval_idx) + self.interval_idx += 1 + + def train_step(self, sample): + (image_input, text_input, text_target) = sample + result = {} + image_input = image_input.to(self.device_env.device, non_blocking=True) + text_input = text_input[:, :-1].to(self.device_env.device, non_blocking=True) + text_target = text_target[:, 1:].to(self.device_env.device, non_blocking=True) + accum_steps = self.cfg.opt.grad_accum_steps + need_update = (self.interval_batch_idx + 1) % accum_steps == 0 + + def _forward(): + with self.autocast(): + output = self.model(image_input, text_input) + logits = output['logits'] + loss = self.loss(logits.view(-1, self.vocab_size), text_target.view(-1)) + if accum_steps > 1: + loss /= accum_steps + return loss + + def _backward(_loss): + if self.scaler is not None: + self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) + else: + _loss.backward() + if need_update: + if self.cfg.opt.clip_grad_value is not None: + timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) + self.optimizer.step() + if self.has_no_sync and (not need_update): + with self.model.no_sync(): + loss = _forward() + _backward(loss) + else: + loss = _forward() + _backward(loss) + self.batch_idx += 1 + self.interval_batch_idx += 1 + if not need_update: + return result + self.step += 1 + self.scheduler.step_update(self.step) + self.optimizer.zero_grad() + if self.step % self.eval_frequency == 0: + (metrics, eval_gallery) = self.get_train_ocr_metrics(sample) + self.train_metrics |= metrics + self.monitor.log_step('train', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=self.train_metrics, eval_data=eval_gallery) + return result + + def get_train_ocr_metrics(self, sample): + metrics = {} + eval_data = {} + (image_input, text_input, text_target) = sample + image_input = image_input.to(self.device_env.device, non_blocking=True) + text_input = text_input[:, :-1].to(self.device_env.device, non_blocking=True) + text_target = text_target[:, 1:].to(self.device_env.device, non_blocking=True) + '' + (ocr_metrics, ocr_reconstructed_sample) = get_ocr_metrics(model=self.model, tokenizer=self.tokenizer, image_input=image_input, text_input=text_target, device_env=self.device_env, max_recursion_length=self.max_recursion_length) + if ocr_metrics and ocr_reconstructed_sample: + metrics['ocr_reconstruction'] = ocr_metrics + eval_data['ocr_reconstruction_data'] = ocr_reconstructed_sample + else: + _logger.info("Can't generate text from current batch. Skipping metrics...") + return (metrics, eval_data) + + def state_dict(self): + state_dicts = {} + state_dicts['model'] = self.model.state_dict() + state_dicts['optimizer'] = self.optimizer.state_dict() + if hasattr(self.scheduler, 'state_dict'): + state_dicts['scheduler'] = self.scheduler.state_dict() + if self.scaler is not None: + state_dicts['scaler'] = self.scaler.state_dict() + return state_dicts + + def load_state_dict(self, state_dict): + pass + + def __repr__(self): + outputs = [f'model: {repr(self.model)}', f'opt: {repr(self.optimizer)}', f'sched: {repr(self.scheduler)}'] + return '\n'.join(outputs) + +# File: pixparse-main/src/pixparse/task/task_donut_eval_ocr.py +from PIL import Image +import re +from transformers import DonutProcessor, VisionEncoderDecoderModel +import torch +from dataclasses import dataclass +from functools import partial +from pixparse.framework import TaskEvalCfg, TaskEval, DeviceEnv, Monitor +from pixparse.models import Cruller, ModelCfg, get_model_config +from pixparse.data import preprocess_text_anno +from pixparse.utils import get_ocr_metrics +from pixparse.utils.ocr_utils import get_cer_wer_metrics +import jiwer.transforms as tr +import torch +import torchvision.transforms as transforms +import numpy as np + +@dataclass +class TaskDonutEvalOCRCfg(TaskEvalCfg): + + def __post_init__(self): + pass + +class TaskDonutEvalOCR(TaskEval): + + def __init__(self, cfg: TaskDonutEvalOCRCfg, device_env: DeviceEnv, monitor: Monitor=None): + super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) + self.cfg = cfg + self.processor = DonutProcessor.from_pretrained('naver-clova-ix/donut-base-finetuned-cord-v2') + self.model = VisionEncoderDecoderModel.from_pretrained('naver-clova-ix/donut-base-finetuned-cord-v2') + self.task_prompt = '' + self.decoder_input_ids = self.processor.tokenizer(self.task_prompt, add_special_tokens=False, return_tensors='pt').input_ids + self.vocab_size = len(self.processor.tokenizer) + preproc_fn = preprocess_text_anno + self.max_position_embeddings = 768 + self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.processor.tokenizer, max_position_embeddings=self.max_position_embeddings, task_start_token='', prompt_end_token=self.task_prompt) + self.model.eval() + self.has_no_sync = False + self.num_image_chs = 3 + self.image_preprocess_eval = lambda x: x + self.cer_transforms = tr.Compose([tr.RemoveSpecificWords(''), tr.Strip(), tr.ReduceToListOfListOfChars()]) + self.wer_transforms = tr.Compose([tr.RemoveSpecificWords(''), tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToListOfListOfWords()]) + self.eval_metrics = {} + self.max_recursion_length = 1000 + + def setup(self): + device = self.device_env.device + self.model.to(device) + + def prepare_for_evaluation(self, loaders): + loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} + return loaders + + def clean_text(self, text: str) -> str: + sequence = text.replace(self.processor.tokenizer.eos_token, '').replace(self.processor.tokenizer.pad_token, '') + cleaned_text = re.sub('<.*?>', '', sequence) + return cleaned_text + + def step(self, sample): + metrics = {} + (image_input, text_input, text_target) = sample + text_input = [item[0] for item in text_input] + text_input = torch.stack(text_input, dim=0).to(self.device_env.device, non_blocking=True) + text_target = [item[0] for item in text_target] + text_target = torch.stack(text_target, dim=0).to(self.device_env.device, non_blocking=True) + decoder_input_ids = self.processor.tokenizer(self.task_prompt, add_special_tokens=False, return_tensors='pt').input_ids + pixel_values = self.processor([im.convert('RGB') for im in image_input], return_tensors='pt').pixel_values + with torch.inference_mode(): + outputs = [self.model.generate(pixel_value.unsqueeze(0).to(self.device_env.device), decoder_input_ids=decoder_input_ids.to(self.device_env.device), max_length=self.max_position_embeddings, early_stopping=True, pad_token_id=self.processor.tokenizer.pad_token_id, eos_token_id=self.processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[self.processor.tokenizer.unk_token_id]], return_dict_in_generate=True) for pixel_value in pixel_values] + generated_text = [self.clean_text(self.processor.decode(greedy_outputs.sequences[0])) for greedy_outputs in outputs] + text_input[text_input == -100] = self.processor.tokenizer.pad_token_id + raw_decoded_texts = self.processor.tokenizer.batch_decode(text_input) + decoded_texts = [self.clean_text(t) for t in raw_decoded_texts] + filtered = [(ref, pred) for (ref, pred) in zip(decoded_texts, generated_text) if ref and pred] + if not filtered: + return (None, None) + (decoded_texts, ocr_predictions) = zip(*filtered) + decoded_texts = list(decoded_texts) + ocr_predictions = list(ocr_predictions) + ocr_predictions = [text[0:len(reftext)] for (text, reftext) in zip(ocr_predictions, decoded_texts)] + metrics['ocr_reconstruction'] = get_cer_wer_metrics(self.cer_transforms, self.wer_transforms, dict(), ocr_predictions, decoded_texts) + return metrics + + def average_metrics(self, metrics: dict): + wer_sum = 0 + cer_sum = 0 + for batch_metrics in metrics.values(): + wer_sum += batch_metrics['ocr_reconstruction']['wer'] + cer_sum += batch_metrics['ocr_reconstruction']['cer'] + num_batches = len(metrics) + average_wer = wer_sum / num_batches + average_cer = cer_sum / num_batches + return {'ocr_reconstruction': {'wer': average_wer, 'cer': average_cer}} + + def end(self): + pass + + def state_dict(self): + state_dicts = {} + state_dicts['model'] = self.model.state_dict() + return state_dicts + +# File: pixparse-main/src/pixparse/task/task_factory.py +import logging +from dataclasses import dataclass, field +from functools import partial +from typing import Optional +import torch +import torchvision.transforms as transforms +from pixparse.framework import TaskEvalCfg, TaskEval, DeviceEnv, Monitor +from pixparse.models import Cruller, ModelCfg, get_model_config +from pixparse.tokenizers import TokenizerHF, TokenizerCfg +from pixparse.data import preprocess_text_anno +from pixparse.utils import get_ocr_metrics +from pixparse.task import TaskCrullerEvalOCR, TaskCrullerEvalOCRCfg, TaskDonutEvalOCR, TaskDonutEvalOCRCfg, TaskCrullerEvalRVLCDIP, TaskCrullerEvalRVLCDIPCfg, TaskCrullerEvalCORD, TaskCrullerEvalCORDCfg, TaskCrullerEvalDOCVQA, TaskCrullerEvalDOCVQACfg, TaskCrullerPretrain, TaskCrullerPretrainCfg, TaskCrullerFinetuneRVLCDIP, TaskCrullerFinetuneRVLCDIPCfg, TaskCrullerFinetuneCORD, TaskCrullerFinetuneCORDCfg, TaskCrullerFinetuneDOCVQA, TaskCrullerFinetuneDOCVQACfg, TaskCrullerFinetuneXent, TaskCrullerFinetuneXentCfg + +class TaskFactory: + TASK_CLASS_REGISTRY = {'cruller_eval_ocr': (TaskCrullerEvalOCR, TaskCrullerEvalOCRCfg), 'cruller_eval_rvlcdip': (TaskCrullerEvalRVLCDIP, TaskCrullerEvalRVLCDIPCfg), 'cruller_eval_cord': (TaskCrullerEvalCORD, TaskCrullerEvalCORDCfg), 'cruller_eval_docvqa': (TaskCrullerEvalDOCVQA, TaskCrullerEvalDOCVQACfg), 'donut_eval_ocr': (TaskDonutEvalOCR, TaskDonutEvalOCRCfg), 'cruller_pretrain': (TaskCrullerPretrain, TaskCrullerPretrainCfg), 'cruller_finetune_rvlcdip': (TaskCrullerFinetuneRVLCDIP, TaskCrullerFinetuneRVLCDIPCfg), 'cruller_finetune_cord': (TaskCrullerFinetuneCORD, TaskCrullerFinetuneCORDCfg), 'cruller_finetune_docvqa': (TaskCrullerFinetuneDOCVQA, TaskCrullerFinetuneDOCVQACfg), 'cruller_finetune_xent': (TaskCrullerFinetuneXent, TaskCrullerFinetuneXentCfg)} + + @classmethod + def create_task(cls, task_name: str, task_args, device_env: DeviceEnv, monitor: Monitor): + task_name = task_name.lower() + if task_name not in cls.TASK_CLASS_REGISTRY: + raise ValueError(f'Unknown task type: {task_name}. Available tasks are {list(cls.TASK_CLASS_REGISTRY.keys())}') + task_cls = cls.TASK_CLASS_REGISTRY[task_name][0] + task_cfg = cls.TASK_CLASS_REGISTRY[task_name][1] + task_cfg_instance = task_cfg(**vars(task_args)) + task_cls_instance = task_cls(cfg=task_cfg_instance, device_env=device_env, monitor=monitor) + return (task_cls_instance, task_cfg_instance) + +# File: pixparse-main/src/pixparse/tokenizers/config.py +import copy +import re +from pathlib import Path +from dataclasses import dataclass, field +from typing import Optional, Tuple +from simple_parsing.helpers import Serializable +from pixparse.utils.name_utils import _natural_key, clean_name +_TOKENIZER_CONFIG_PATHS = [Path(__file__).parent / f'configs/'] +_TOKENIZER_CONFIGS = {} + +@dataclass +class TokenizerCfg(Serializable): + name: str = 'facebook/bart-large' + pretrained: bool = True + +def _scan_tokenizer_configs(): + global _TOKENIZER_CONFIGS + config_ext = ('.json',) + config_files = [] + for config_path in _TOKENIZER_CONFIG_PATHS: + if config_path.is_file() and config_path.suffix in config_ext: + config_files.append(config_path) + elif config_path.is_dir(): + for ext in config_ext: + config_files.extend(config_path.glob(f'*{ext}')) + for cf in config_files: + tokenizer_cfg = TokenizerCfg.load(cf) + _TOKENIZER_CONFIGS[cf.stem] = tokenizer_cfg + _TOKENIZER_CONFIGS = {k: v for (k, v) in sorted(_TOKENIZER_CONFIGS.items(), key=lambda x: _natural_key(x[0]))} +_scan_tokenizer_configs() + +def list_tokenizers(): + return list(_TOKENIZER_CONFIGS.keys()) + +def get_tokenizer_config(tokenizer_name): + tokenizer_name = clean_name(tokenizer_name) + cfg = _TOKENIZER_CONFIGS.get(tokenizer_name, None) + return copy.deepcopy(cfg) + +# File: pixparse-main/src/pixparse/tokenizers/tokenizer_hf.py +from torch import nn as nn +from pixparse.tokenizers.config import TokenizerCfg +from transformers import AutoTokenizer + +def create_tokenizer(cfg: TokenizerCfg): + assert cfg.name + extra_kwargs = {} + tokenizer = AutoTokenizer.from_pretrained(cfg.name, **extra_kwargs) + return tokenizer + +class TokenizerHF(nn.Module): + + def __init__(self, cfg: TokenizerCfg): + super().__init__() + self.trunk = create_tokenizer(cfg) +