# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/async_utils.py import functools from typing import Any, Callable, Dict, TypeVar import anyio from anyio import Semaphore from typing_extensions import ParamSpec MAX_CONCURRENT_THREADS = 1 MAX_THREADS_GUARD = Semaphore(MAX_CONCURRENT_THREADS) T = TypeVar('T') P = ParamSpec('P') async def async_handler_call(handler: Callable[P, T], body: Dict[str, Any]) -> T: async with MAX_THREADS_GUARD: return await anyio.to_thread.run_sync(functools.partial(handler, body)) # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/const.py import os from pathlib import Path from huggingface_inference_toolkit.env_utils import strtobool HF_MODEL_DIR = os.environ.get('HF_MODEL_DIR', '/opt/huggingface/model') HF_MODEL_ID = os.environ.get('HF_MODEL_ID', None) HF_TASK = os.environ.get('HF_TASK', None) HF_FRAMEWORK = os.environ.get('HF_FRAMEWORK', None) HF_REVISION = os.environ.get('HF_REVISION', None) HF_HUB_TOKEN = os.environ.get('HF_HUB_TOKEN', None) HF_TRUST_REMOTE_CODE = strtobool(os.environ.get('HF_TRUST_REMOTE_CODE', '0')) HF_DEFAULT_PIPELINE_NAME = os.environ.get('HF_DEFAULT_PIPELINE_NAME', 'handler.py') HF_MODULE_NAME = os.environ.get('HF_MODULE_NAME', f'{Path(HF_DEFAULT_PIPELINE_NAME).stem}.EndpointHandler') # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/diffusers_utils.py import importlib.util from typing import Union from transformers.utils.import_utils import is_torch_bf16_gpu_available from huggingface_inference_toolkit.logging import logger _diffusers = importlib.util.find_spec('diffusers') is not None def is_diffusers_available(): return _diffusers if is_diffusers_available(): import torch from diffusers import AutoPipelineForText2Image, DPMSolverMultistepScheduler, StableDiffusionPipeline class IEAutoPipelineForText2Image: def __init__(self, model_dir: str, device: Union[str, None]=None, **kwargs): dtype = torch.float32 if device == 'cuda': dtype = torch.bfloat16 if is_torch_bf16_gpu_available() else torch.float16 device_map = 'balanced' if device == 'cuda' else None self.pipeline = AutoPipelineForText2Image.from_pretrained(model_dir, torch_dtype=dtype, device_map=device_map, **kwargs) if isinstance(self.pipeline, StableDiffusionPipeline): try: self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(self.pipeline.scheduler.config) except Exception: pass def __call__(self, prompt, **kwargs): if 'num_images_per_prompt' in kwargs: kwargs.pop('num_images_per_prompt') logger.warning('Sending num_images_per_prompt > 1 to pipeline is not supported. Using default value 1.') out = self.pipeline(prompt, num_images_per_prompt=1, **kwargs) return out.images[0] DIFFUSERS_TASKS = {'text-to-image': IEAutoPipelineForText2Image} def get_diffusers_pipeline(task=None, model_dir=None, device=-1, **kwargs): device = 'cuda' if device == 0 else 'cpu' pipeline = DIFFUSERS_TASKS[task](model_dir=model_dir, device=device, **kwargs) return pipeline # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/env_utils.py def strtobool(val: str) -> bool: val = val.lower() if val in ('y', 'yes', 't', 'true', 'on', '1'): return True if val in ('n', 'no', 'f', 'false', 'off', '0'): return False raise ValueError(f'Invalid truth value, it should be a string but {val} was provided instead.') # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/handler.py import os from pathlib import Path from typing import Optional, Union from huggingface_inference_toolkit.const import HF_TRUST_REMOTE_CODE from huggingface_inference_toolkit.utils import check_and_register_custom_pipeline_from_directory, get_pipeline class HuggingFaceHandler: def __init__(self, model_dir: Union[str, Path], task=None, framework='pt'): self.pipeline = get_pipeline(model_dir=model_dir, task=task, framework=framework, trust_remote_code=HF_TRUST_REMOTE_CODE) def __call__(self, data): inputs = data.pop('inputs', data) parameters = data.pop('parameters', None) if parameters is not None: prediction = self.pipeline(inputs, **parameters) else: prediction = self.pipeline(inputs) return prediction class VertexAIHandler(HuggingFaceHandler): def __init__(self, model_dir: Union[str, Path], task=None, framework='pt'): super().__init__(model_dir, task, framework) def __call__(self, data): if 'instances' not in data: raise ValueError("The request body must contain a key 'instances' with a list of instances.") parameters = data.pop('parameters', None) predictions = [] for inputs in data['instances']: payload = {'inputs': inputs, 'parameters': parameters} predictions.append(super().__call__(payload)) return {'predictions': predictions} def get_inference_handler_either_custom_or_default_handler(model_dir: Path, task: Optional[str]=None): custom_pipeline = check_and_register_custom_pipeline_from_directory(model_dir) if custom_pipeline: return custom_pipeline elif os.environ.get('AIP_MODE', None) == 'PREDICTION': return VertexAIHandler(model_dir=model_dir, task=task) else: return HuggingFaceHandler(model_dir=model_dir, task=task) # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/logging.py import logging import sys def setup_logging(): for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', stream=sys.stdout) logging.getLogger('uvicorn').handlers.clear() logging.getLogger('uvicorn.access').handlers.clear() logging.getLogger('uvicorn.error').handlers.clear() logger = logging.getLogger('huggingface_inference_toolkit') return logger logger = setup_logging() # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/optimum_utils.py import importlib.util import os from huggingface_inference_toolkit.logging import logger _optimum_neuron = False if importlib.util.find_spec('optimum') is not None: if importlib.util.find_spec('optimum.neuron') is not None: _optimum_neuron = True def is_optimum_neuron_available(): return _optimum_neuron def get_input_shapes(model_dir): from transformers import AutoConfig input_shapes = {} input_shapes_available = False try: config = AutoConfig.from_pretrained(model_dir) if hasattr(config, 'neuron'): if config.neuron.get('static_batch_size', None) and config.neuron.get('static_sequence_length', None): input_shapes['batch_size'] = config.neuron['static_batch_size'] input_shapes['sequence_length'] = config.neuron['static_sequence_length'] input_shapes_available = True logger.info(f"Input shapes found in config file. Using input shapes from config with batch size {input_shapes['batch_size']} and sequence length {input_shapes['sequence_length']}") else: if os.environ.get('HF_OPTIMUM_BATCH_SIZE', None) is not None: logger.warning('HF_OPTIMUM_BATCH_SIZE environment variable is set. Environment variable will be ignored and input shapes from config file will be used.') if os.environ.get('HF_OPTIMUM_SEQUENCE_LENGTH', None) is not None: logger.warning('HF_OPTIMUM_SEQUENCE_LENGTH environment variable is set. Environment variable will be ignored and input shapes from config file will be used.') except Exception: input_shapes_available = False if input_shapes_available: return input_shapes sequence_length = os.environ.get('HF_OPTIMUM_SEQUENCE_LENGTH', None) if sequence_length is None: raise ValueError('HF_OPTIMUM_SEQUENCE_LENGTH environment variable is not set. Please set HF_OPTIMUM_SEQUENCE_LENGTH to a positive integer.') if not int(sequence_length) > 0: raise ValueError(f'HF_OPTIMUM_SEQUENCE_LENGTH must be set to a positive integer. Current value is {sequence_length}') batch_size = os.environ.get('HF_OPTIMUM_BATCH_SIZE', 1) logger.info(f'Using input shapes from environment variables with batch size {batch_size} and sequence length {sequence_length}') return {'batch_size': int(batch_size), 'sequence_length': int(sequence_length)} def get_optimum_neuron_pipeline(task, model_dir): logger.info('Getting optimum neuron pipeline.') from optimum.neuron.pipelines.transformers.base import NEURONX_SUPPORTED_TASKS, pipeline from optimum.neuron.utils import NEURON_FILE_NAME if not isinstance(model_dir, str): model_dir = str(model_dir) if task == 'sentence-embeddings': task = 'feature-extraction' if task not in NEURONX_SUPPORTED_TASKS: raise ValueError(f'Task {task} is not supported by optimum neuron and inf2. Supported tasks are: {list(NEURONX_SUPPORTED_TASKS.keys())}') export = True if NEURON_FILE_NAME in os.listdir(model_dir): export = False if export: logger.info('Model is not converted. Checking if required environment variables are set and converting model.') input_shapes = get_input_shapes(model_dir) neuron_pipe = pipeline(task, model=model_dir, export=export, input_shapes=input_shapes) return neuron_pipe # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/sentence_transformers_utils.py import importlib.util _sentence_transformers = importlib.util.find_spec('sentence_transformers') is not None def is_sentence_transformers_available(): return _sentence_transformers if is_sentence_transformers_available(): from sentence_transformers import CrossEncoder, SentenceTransformer, util class SentenceSimilarityPipeline: def __init__(self, model_dir: str, device: str=None, **kwargs): self.model = SentenceTransformer(model_dir, device=device, **kwargs) def __call__(self, inputs=None): embeddings1 = self.model.encode(inputs['source_sentence'], convert_to_tensor=True) embeddings2 = self.model.encode(inputs['sentences'], convert_to_tensor=True) similarities = util.pytorch_cos_sim(embeddings1, embeddings2).tolist()[0] return {'similarities': similarities} class SentenceEmbeddingPipeline: def __init__(self, model_dir: str, device: str=None, **kwargs): self.model = SentenceTransformer(model_dir, device=device, **kwargs) def __call__(self, inputs): embeddings = self.model.encode(inputs).tolist() return {'embeddings': embeddings} class RankingPipeline: def __init__(self, model_dir: str, device: str=None, **kwargs): self.model = CrossEncoder(model_dir, device=device, **kwargs) def __call__(self, inputs): scores = self.model.predict(inputs).tolist() return {'scores': scores} SENTENCE_TRANSFORMERS_TASKS = {'sentence-similarity': SentenceSimilarityPipeline, 'sentence-embeddings': SentenceEmbeddingPipeline, 'sentence-ranking': RankingPipeline} def get_sentence_transformers_pipeline(task=None, model_dir=None, device=-1, **kwargs): device = 'cuda' if device == 0 else 'cpu' kwargs.pop('tokenizer', None) kwargs.pop('framework', None) if task not in SENTENCE_TRANSFORMERS_TASKS: raise ValueError(f"Unknown task {task}. Available tasks are: {', '.join(SENTENCE_TRANSFORMERS_TASKS.keys())}") return SENTENCE_TRANSFORMERS_TASKS[task](model_dir=model_dir, device=device, **kwargs) # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/serialization/base.py from huggingface_inference_toolkit.serialization.audio_utils import Audioer from huggingface_inference_toolkit.serialization.image_utils import Imager from huggingface_inference_toolkit.serialization.json_utils import Jsoner content_type_mapping = {'application/json': Jsoner, 'application/json; charset=UTF-8': Jsoner, 'text/csv': None, 'text/plain': None, 'image/png': Imager, 'image/jpeg': Imager, 'image/jpg': Imager, 'image/tiff': Imager, 'image/bmp': Imager, 'image/gif': Imager, 'image/webp': Imager, 'image/x-image': Imager, 'audio/x-flac': Audioer, 'audio/flac': Audioer, 'audio/mpeg': Audioer, 'audio/x-mpeg-3': Audioer, 'audio/wave': Audioer, 'audio/wav': Audioer, 'audio/x-wav': Audioer, 'audio/ogg': Audioer, 'audio/x-audio': Audioer, 'audio/webm': Audioer, 'audio/webm;codecs=opus': Audioer, 'audio/AMR': Audioer, 'audio/amr': Audioer, 'audio/AMR-WB': Audioer, 'audio/AMR-WB+': Audioer, 'audio/m4a': Audioer, 'audio/x-m4a': Audioer} class ContentType: @staticmethod def get_deserializer(content_type): if content_type in content_type_mapping: return content_type_mapping[content_type] else: message = f'''\n Content type "{content_type}" not supported.\n Supported content types are:\n {', '.join(list(content_type_mapping.keys()))}\n ''' raise Exception(message) @staticmethod def get_serializer(accept): if accept in content_type_mapping: return content_type_mapping[accept] else: message = f'''\n Accept type "{accept}" not supported.\n Supported accept types are:\n {', '.join(list(content_type_mapping.keys()))}\n ''' raise Exception(message) # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/serialization/image_utils.py from io import BytesIO from PIL import Image class Imager: @staticmethod def deserialize(body): image = Image.open(BytesIO(body)).convert('RGB') return {'inputs': image} @staticmethod def serialize(image, accept=None): if isinstance(image, Image.Image): img_byte_arr = BytesIO() image.save(img_byte_arr, format=accept.split('/')[-1].upper()) img_byte_arr = img_byte_arr.getvalue() return img_byte_arr else: raise ValueError(f'Can only serialize PIL.Image.Image, got {type(image)}') # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/serialization/json_utils.py import base64 from io import BytesIO import orjson from PIL import Image def default(obj): if isinstance(obj, Image.Image): with BytesIO() as out: obj.save(out, format='PNG') png_string = out.getvalue() return base64.b64encode(png_string).decode('utf-8') raise TypeError class Jsoner: @staticmethod def deserialize(body): return orjson.loads(body) @staticmethod def serialize(body, accept=None): return orjson.dumps(body, option=orjson.OPT_SERIALIZE_NUMPY, default=default) # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/utils.py import importlib.util import sys from pathlib import Path from typing import Optional, Union from huggingface_hub import HfApi, login, snapshot_download from transformers import WhisperForConditionalGeneration, pipeline from transformers.file_utils import is_tf_available, is_torch_available from transformers.pipelines import Pipeline from huggingface_inference_toolkit.const import HF_DEFAULT_PIPELINE_NAME, HF_MODULE_NAME from huggingface_inference_toolkit.diffusers_utils import get_diffusers_pipeline, is_diffusers_available from huggingface_inference_toolkit.logging import logger from huggingface_inference_toolkit.optimum_utils import get_optimum_neuron_pipeline, is_optimum_neuron_available from huggingface_inference_toolkit.sentence_transformers_utils import get_sentence_transformers_pipeline, is_sentence_transformers_available if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _optimum_available = importlib.util.find_spec('optimum') is not None def is_optimum_available(): return False framework2weight = {'pytorch': 'pytorch*', 'tensorflow': 'tf*', 'tf': 'tf*', 'pt': 'pytorch*', 'flax': 'flax*', 'rust': 'rust*', 'onnx': '*onnx*', 'safetensors': '*safetensors', 'coreml': '*mlmodel', 'tflite': '*tflite', 'savedmodel': '*tar.gz', 'openvino': '*openvino*', 'ckpt': '*ckpt'} def create_artifact_filter(framework): ignore_regex_list = list(set(framework2weight.values())) pattern = framework2weight.get(framework, None) if pattern in ignore_regex_list: ignore_regex_list.remove(pattern) return ignore_regex_list else: return [] def _is_gpu_available(): if is_tf_available(): return True if len(tf.config.list_physical_devices('GPU')) > 0 else False elif is_torch_available(): return torch.cuda.is_available() else: raise RuntimeError('At least one of TensorFlow 2.0 or PyTorch should be installed. To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ To install PyTorch, read the instructions at https://pytorch.org/.') def _get_framework(): if is_torch_available(): return 'pytorch' elif is_tf_available(): return 'tensorflow' else: raise RuntimeError('At least one of TensorFlow 2.0 or PyTorch should be installed. To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ To install PyTorch, read the instructions at https://pytorch.org/.') def _load_repository_from_hf(repository_id: Optional[str]=None, target_dir: Optional[Union[str, Path]]=None, framework: Optional[str]=None, revision: Optional[str]=None, hf_hub_token: Optional[str]=None): if hf_hub_token is not None: login(token=hf_hub_token) if framework is None: framework = _get_framework() if isinstance(target_dir, str): target_dir = Path(target_dir) if not target_dir.exists(): target_dir.mkdir(parents=True) if framework == 'pytorch': files = HfApi().model_info(repository_id).siblings if any((f.rfilename.endswith('safetensors') for f in files)): framework = 'safetensors' ignore_regex = create_artifact_filter(framework) logger.info(f"Ignore regex pattern for files, which are not downloaded: {', '.join(ignore_regex)}") snapshot_download(repo_id=repository_id, revision=revision, local_dir=str(target_dir), local_dir_use_symlinks=False, ignore_patterns=ignore_regex) return target_dir def check_and_register_custom_pipeline_from_directory(model_dir): custom_module = Path(model_dir).joinpath(HF_DEFAULT_PIPELINE_NAME) legacy_module = Path(model_dir).joinpath('pipeline.py') if custom_module.is_file(): logger.info(f'Found custom pipeline at {custom_module}') spec = importlib.util.spec_from_file_location(HF_MODULE_NAME, custom_module) if spec: sys.path.insert(0, model_dir) handler = importlib.util.module_from_spec(spec) sys.modules[HF_MODULE_NAME] = handler spec.loader.exec_module(handler) custom_pipeline = handler.EndpointHandler(model_dir) elif legacy_module.is_file(): logger.warning('You are using a legacy custom pipeline.\n Please update to the new format.\n See documentation for more information.') spec = importlib.util.spec_from_file_location('pipeline.PreTrainedPipeline', legacy_module) if spec: sys.path.insert(0, model_dir) pipeline = importlib.util.module_from_spec(spec) sys.modules['pipeline.PreTrainedPipeline'] = pipeline spec.loader.exec_module(pipeline) custom_pipeline = pipeline.PreTrainedPipeline(model_dir) else: logger.info(f'No custom pipeline found at {custom_module}') custom_pipeline = None return custom_pipeline def get_device(): gpu = _is_gpu_available() if gpu: return 0 else: return -1 def get_pipeline(task: str, model_dir: Path, **kwargs) -> Pipeline: device = get_device() if is_optimum_neuron_available(): logger.info('Using device Neuron') else: logger.info(f"Using device {('GPU' if device == 0 else 'CPU')}") if task is None: raise EnvironmentError('The task for this model is not set: Please set one: https://huggingface.co/docs#how-is-a-models-type-of-inference-api-and-widget-determined') if task in {'automatic-speech-recognition', 'image-segmentation', 'image-classification', 'audio-classification', 'object-detection', 'zero-shot-image-classification'}: kwargs['feature_extractor'] = model_dir elif task in {'image-to-text', 'text-to-image'}: pass elif task == 'conversational': task = 'text-generation' else: kwargs['tokenizer'] = model_dir if is_optimum_neuron_available(): hf_pipeline = get_optimum_neuron_pipeline(task=task, model_dir=model_dir) elif is_sentence_transformers_available() and task in ['sentence-similarity', 'sentence-embeddings', 'sentence-ranking']: hf_pipeline = get_sentence_transformers_pipeline(task=task, model_dir=model_dir, device=device, **kwargs) elif is_diffusers_available() and task == 'text-to-image': hf_pipeline = get_diffusers_pipeline(task=task, model_dir=model_dir, device=device, **kwargs) else: hf_pipeline = pipeline(task=task, model=model_dir, device=device, **kwargs) if task == 'automatic-speech-recognition' and isinstance(hf_pipeline.model, WhisperForConditionalGeneration): hf_pipeline._preprocess_params['chunk_length_s'] = 30 hf_pipeline.model.config.forced_decoder_ids = hf_pipeline.tokenizer.get_decoder_prompt_ids(language='english', task='transcribe') return hf_pipeline def convert_params_to_int_or_bool(params): for (k, v) in params.items(): if v.isnumeric(): params[k] = int(v) if v == 'false': params[k] = False if v == 'true': params[k] = True return params # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/vertex_ai_utils.py import re from pathlib import Path from typing import Union from huggingface_inference_toolkit.logging import logger GCS_URI_PREFIX = 'gs://' def _load_repository_from_gcs(artifact_uri: str, target_dir: Union[str, Path]='/tmp') -> str: from google.cloud import storage logger.info(f'Loading model artifacts from {artifact_uri} to {target_dir}') if isinstance(target_dir, str): target_dir = Path(target_dir) if artifact_uri.startswith(GCS_URI_PREFIX): matches = re.match(f'{GCS_URI_PREFIX}(.*?)/(.*)', artifact_uri) (bucket_name, prefix) = matches.groups() gcs_client = storage.Client() blobs = gcs_client.list_blobs(bucket_name, prefix=prefix) for blob in blobs: name_without_prefix = blob.name[len(prefix):] name_without_prefix = name_without_prefix[1:] if name_without_prefix.startswith('/') else name_without_prefix file_split = name_without_prefix.split('/') directory = target_dir / Path(*file_split[0:-1]) directory.mkdir(parents=True, exist_ok=True) if name_without_prefix and (not name_without_prefix.endswith('/')): blob.download_to_filename(target_dir / name_without_prefix) return str(target_dir.absolute()) # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/webservice_starlette.py import os from pathlib import Path from time import perf_counter import orjson from starlette.applications import Starlette from starlette.responses import PlainTextResponse, Response from starlette.routing import Route from huggingface_inference_toolkit.async_utils import async_handler_call from huggingface_inference_toolkit.const import HF_FRAMEWORK, HF_HUB_TOKEN, HF_MODEL_DIR, HF_MODEL_ID, HF_REVISION, HF_TASK from huggingface_inference_toolkit.handler import get_inference_handler_either_custom_or_default_handler from huggingface_inference_toolkit.logging import logger from huggingface_inference_toolkit.serialization.base import ContentType from huggingface_inference_toolkit.serialization.json_utils import Jsoner from huggingface_inference_toolkit.utils import _load_repository_from_hf, convert_params_to_int_or_bool from huggingface_inference_toolkit.vertex_ai_utils import _load_repository_from_gcs async def prepare_model_artifacts(): global inference_handler if len(list(Path(HF_MODEL_DIR).glob('**/*'))) <= 0: if HF_MODEL_ID is not None: _load_repository_from_hf(repository_id=HF_MODEL_ID, target_dir=HF_MODEL_DIR, framework=HF_FRAMEWORK, revision=HF_REVISION, hf_hub_token=HF_HUB_TOKEN) elif len(os.environ.get('AIP_STORAGE_URI', '')) > 0: _load_repository_from_gcs(os.environ['AIP_STORAGE_URI'], target_dir=HF_MODEL_DIR) else: raise ValueError(f"Can't initialize model.\n Please set env HF_MODEL_DIR or provider a HF_MODEL_ID.\n Provided values are:\n HF_MODEL_DIR: {HF_MODEL_DIR} and HF_MODEL_ID:{HF_MODEL_ID}") logger.info(f'Initializing model from directory:{HF_MODEL_DIR}') inference_handler = get_inference_handler_either_custom_or_default_handler(HF_MODEL_DIR, task=HF_TASK) logger.info('Model initialized successfully') async def health(request): return PlainTextResponse('Ok') async def predict(request): try: content_type = request.headers.get('content-Type', None) deserialized_body = ContentType.get_deserializer(content_type).deserialize(await request.body()) if 'inputs' not in deserialized_body and 'instances' not in deserialized_body: raise ValueError(f'Body needs to provide a inputs key, received: {orjson.dumps(deserialized_body)}') if request.query_params and 'parameters' not in deserialized_body: deserialized_body['parameters'] = convert_params_to_int_or_bool(dict(request.query_params)) start_time = perf_counter() pred = await async_handler_call(inference_handler, deserialized_body) logger.info(f'POST {request.url.path} | Duration: {(perf_counter() - start_time) * 1000:.2f} ms') accept = request.headers.get('accept', None) if accept is None or accept == '*/*': accept = 'application/json' serialized_response_body = ContentType.get_serializer(accept).serialize(pred, accept) return Response(serialized_response_body, media_type=accept) except Exception as e: logger.error(e) return Response(Jsoner.serialize({'error': str(e)}), status_code=400, media_type='application/json') if os.getenv('AIP_MODE', None) == 'PREDICTION': logger.info('Running in Vertex AI environment') _predict_route = os.getenv('AIP_PREDICT_ROUTE', None) _health_route = os.getenv('AIP_HEALTH_ROUTE', None) if _predict_route is None or _health_route is None: raise ValueError('AIP_PREDICT_ROUTE and AIP_HEALTH_ROUTE need to be set in Vertex AI environment') app = Starlette(debug=False, routes=[Route(_health_route, health, methods=['GET']), Route(_predict_route, predict, methods=['POST'])], on_startup=[prepare_model_artifacts]) else: app = Starlette(debug=False, routes=[Route('/', health, methods=['GET']), Route('/health', health, methods=['GET']), Route('/', predict, methods=['POST']), Route('/predict', predict, methods=['POST'])], on_startup=[prepare_model_artifacts])