# File: diffusion-fast-main/prepare_results.py import argparse import glob import os import sys import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from huggingface_hub import upload_file sys.path.append('.') from utils.benchmarking_utils import collate_csv REPO_ID = 'sayakpaul/sample-datasets' def prepare_plot(df, args): columns_to_drop = ['batch_size', 'num_inference_steps', 'pipeline_cls', 'ckpt_id', 'upcast_vae', 'memory (gbs)', 'actual_gpu_memory (gbs)', 'tag'] df_filtered = df.drop(columns=columns_to_drop) df_filtered[['quant']] = df_filtered[['do_quant']].fillna('None') df_filtered.drop(columns=['do_quant'], inplace=True) df_filtered['settings'] = df_filtered.apply(lambda row: ', '.join([f'{col}-{row[col]}' for col in df_filtered.columns if col != 'time (secs)']), axis=1) df_filtered['formatted_settings'] = df_filtered['settings'].str.replace(', ', '\n', regex=False) df_filtered.loc[0, 'formatted_settings'] = 'default' plt.figure(figsize=(12, 10)) sns.set_style('whitegrid') n_settings = len(df_filtered['formatted_settings'].unique()) bar_positions = range(n_settings) palette = sns.color_palette('husl', n_settings) bar_width = 0.25 for (i, setting) in enumerate(df_filtered['formatted_settings'].unique()): mean_time = df_filtered[df_filtered['formatted_settings'] == setting]['time (secs)'].mean() plt.bar(i, mean_time, width=bar_width, align='center', color=palette[i]) plt.text(i, mean_time + 0.01, f'{mean_time:.2f}', ha='center', va='bottom', fontsize=14, fontweight='bold') plt.xticks(bar_positions, df_filtered['formatted_settings'].unique(), rotation=45, ha='right', fontsize=10) plt.ylabel('Time in Seconds', fontsize=14, labelpad=15) plt.xlabel('Settings', fontsize=14, labelpad=15) plt.title(args.plot_title, fontsize=18, fontweight='bold', pad=20) plt.grid(axis='y', linestyle='--', linewidth=0.7, alpha=0.7) plt.tight_layout() plt.subplots_adjust(top=0.9, bottom=0.2) plot_path = args.plot_title.replace(' ', '_') + '.png' plt.savefig(plot_path, bbox_inches='tight', dpi=300) if args.push_to_hub: upload_file(repo_id=REPO_ID, path_in_repo=plot_path, path_or_fileobj=plot_path, repo_type='dataset') print(f'Plot successfully uploaded. Find it here: https://huggingface.co/datasets/{REPO_ID}/blob/main/{args.plot_file_path}') plt.show() def main(args): all_csvs = sorted(glob.glob(f'{args.base_path}/*.csv')) all_csvs = [os.path.join(args.base_path, x) for x in all_csvs] is_pixart = 'PixArt-alpha' in all_csvs[0] collate_csv(all_csvs, args.final_csv_filename, is_pixart=is_pixart) if args.push_to_hub: upload_file(repo_id=REPO_ID, path_in_repo=args.final_csv_filename, path_or_fileobj=args.final_csv_filename, repo_type='dataset') print(f'CSV successfully uploaded. Find it here: https://huggingface.co/datasets/{REPO_ID}/blob/main/{args.final_csv_filename}') if args.plot_title is not None: df = pd.read_csv(args.final_csv_filename) prepare_plot(df, args) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--base_path', type=str, default='.') parser.add_argument('--final_csv_filename', type=str, default='collated_results.csv') parser.add_argument('--plot_title', type=str, default=None) parser.add_argument('--push_to_hub', action='store_true') args = parser.parse_args() main(args) # File: diffusion-fast-main/run_benchmark.py import torch torch.set_float32_matmul_precision('high') import sys sys.path.append('.') from utils.benchmarking_utils import benchmark_fn, create_parser, generate_csv_dict, write_to_csv from utils.pipeline_utils import load_pipeline def run_inference(pipe, args): _ = pipe(prompt=args.prompt, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size) def main(args) -> dict: pipeline = load_pipeline(ckpt=args.ckpt, compile_unet=args.compile_unet, compile_vae=args.compile_vae, no_sdpa=args.no_sdpa, no_bf16=args.no_bf16, upcast_vae=args.upcast_vae, enable_fused_projections=args.enable_fused_projections, do_quant=args.do_quant, compile_mode=args.compile_mode, change_comp_config=args.change_comp_config, device=args.device) run_inference(pipeline, args) run_inference(pipeline, args) run_inference(pipeline, args) time = benchmark_fn(run_inference, pipeline, args) data_dict = generate_csv_dict(pipeline_cls=str(pipeline.__class__.__name__), args=args, time=time) img = pipeline(prompt=args.prompt, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size).images[0] return (data_dict, img) if __name__ == '__main__': parser = create_parser() args = parser.parse_args() print(args) (data_dict, img) = main(args) name = args.ckpt.replace('/', '_') + f'bf16@{not args.no_bf16}-sdpa@{not args.no_sdpa}-bs@{args.batch_size}-fuse@{args.enable_fused_projections}-upcast_vae@{args.upcast_vae}-steps@{args.num_inference_steps}-unet@{args.compile_unet}-vae@{args.compile_vae}-mode@{args.compile_mode}-change_comp_config@{args.change_comp_config}-do_quant@{args.do_quant}-tag@{args.tag}-device@{args.device}.csv' img.save(f"{name.replace('.csv', '')}.jpeg") write_to_csv(name, data_dict) # File: diffusion-fast-main/run_benchmark_pixart.py import torch torch.set_float32_matmul_precision('high') import sys sys.path.append('.') from utils.benchmarking_utils import benchmark_fn, create_parser, generate_csv_dict, write_to_csv from utils.pipeline_utils_pixart import load_pipeline def run_inference(pipe, args): _ = pipe(prompt=args.prompt, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size) def main(args) -> dict: pipeline = load_pipeline(ckpt=args.ckpt, compile_transformer=args.compile_transformer, compile_vae=args.compile_vae, no_sdpa=args.no_sdpa, no_bf16=args.no_bf16, enable_fused_projections=args.enable_fused_projections, do_quant=args.do_quant, compile_mode=args.compile_mode, change_comp_config=args.change_comp_config, device=args.device) run_inference(pipeline, args) run_inference(pipeline, args) run_inference(pipeline, args) time = benchmark_fn(run_inference, pipeline, args) data_dict = generate_csv_dict(pipeline_cls=str(pipeline.__class__.__name__), args=args, time=time) img = pipeline(prompt=args.prompt, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size).images[0] return (data_dict, img) if __name__ == '__main__': parser = create_parser(is_pixart=True) args = parser.parse_args() print(args) (data_dict, img) = main(args) name = args.ckpt.replace('/', '_') + f'bf16@{not args.no_bf16}-sdpa@{not args.no_sdpa}-bs@{args.batch_size}-fuse@{args.enable_fused_projections}-upcast_vae@NA-steps@{args.num_inference_steps}-transformer@{args.compile_transformer}-vae@{args.compile_vae}-mode@{args.compile_mode}-change_comp_config@{args.change_comp_config}-do_quant@{args.do_quant}-tag@{args.tag}-device@{args.device}.csv' img.save(f'{name}.jpeg') write_to_csv(name, data_dict, is_pixart=True) # File: diffusion-fast-main/run_profile.py import torch torch.set_float32_matmul_precision('high') from torch._inductor import config as inductorconfig inductorconfig.triton.unique_kernel_names = True import functools import sys sys.path.append('.') from utils.benchmarking_utils import create_parser from utils.pipeline_utils import load_pipeline def profiler_runner(path, fn, *args, **kwargs): with torch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA], record_shapes=True) as prof: result = fn(*args, **kwargs) prof.export_chrome_trace(path) return result def run_inference(pipe, args): _ = pipe(prompt=args.prompt, num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.batch_size) def main(args) -> dict: pipeline = load_pipeline(ckpt=args.ckpt, compile_unet=args.compile_unet, compile_vae=args.compile_vae, no_sdpa=args.no_sdpa, no_bf16=args.no_bf16, upcast_vae=args.upcast_vae, enable_fused_projections=args.enable_fused_projections, do_quant=args.do_quant, compile_mode=args.compile_mode, change_comp_config=args.change_comp_config, device=args.device) run_inference(pipeline, args) run_inference(pipeline, args) trace_path = args.ckpt.replace('/', '_') + f'bf16@{not args.no_bf16}-sdpa@{not args.no_sdpa}-bs@{args.batch_size}-fuse@{args.enable_fused_projections}-upcast_vae@{args.upcast_vae}-steps@{args.num_inference_steps}-unet@{args.compile_unet}-vae@{args.compile_vae}-mode@{args.compile_mode}-change_comp_config@{args.change_comp_config}-do_quant@{args.do_quant}-device@{args.device}.json' runner = functools.partial(profiler_runner, trace_path) with torch.autograd.profiler.record_function('sdxl-brrr'): runner(run_inference, pipeline, args) return trace_path if __name__ == '__main__': parser = create_parser() args = parser.parse_args() if not args.compile_unet: args.compile_mode = 'NA' trace_path = main(args) print(f'Trace generated at: {trace_path}')