--- annotations_creators: [] language: - en language_creators: - found license: - mit multilinguality: - monolingual pretty_name: laion-aesthetics-12m-umap size_categories: [] source_datasets: [] tags: - laion - stable-diffuson - text2img task_categories: [] task_ids: [] --- # LAION-Aesthetics :: CLIP → UMAP This dataset is a CLIP (text) → UMAP embedding of the [LAION-Aesthetics dataset](https://laion.ai/blog/laion-aesthetics/) - specifically the [`improved_aesthetics_6plus` version](https://huggingface.co/datasets/ChristophSchuhmann/improved_aesthetics_6plus), which filters the full dataset to images with scores of > 6 under the "aesthetic" filtering model. Thanks LAION for this amazing corpus! --- The dataset here includes coordinates for 3x separate UMAP fits using different values for the `n_neighbors` parameter - `10`, `30`, and `60` - which are broken out as separate columns with different suffixes: - `n_neighbors=10` → (`x_nn10`, `y_nn10`) - `n_neighbors=30` → (`x_nn30`, `y_nn30`) - `n_neighbors=60` → (`x_nn60`, `y_nn60`) ### `nn10` ![nn10](https://user-images.githubusercontent.com/814168/189763846-efa9ecc9-3d57-469b-9d4e-02ddc1723265.jpg) ### `nn30` ![nn30](https://user-images.githubusercontent.com/814168/189763863-a67d4bb1-e043-48ec-8c5a-38dce960731b.jpg) ### `nn60` (The version from [Twitter](https://twitter.com/clured/status/1565399157606580224).) ![nn60](https://user-images.githubusercontent.com/814168/189763872-5847cde5-e03b-45e1-a9be-d95966bc5ded.jpg) ## Pipeline The script for producing this can be found here: https://github.com/davidmcclure/loam-viz/blob/laion/laion.py And is very simple - just using the `openai/clip-vit-base-patch32` model out-of-the-box to encode the text captions: ```python @app.command() def clip( src: str, dst: str, text_col: str = 'TEXT', limit: Optional[int] = typer.Option(None), batch_size: int = typer.Option(512), ): """Embed with CLIP.""" df = pd.read_parquet(src) if limit: df = df.head(limit) tokenizer = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32') model = CLIPTextModel.from_pretrained('openai/clip-vit-base-patch32') model = model.to(device) texts = df[text_col].tolist() embeds = [] for batch in chunked_iter(tqdm(texts), batch_size): enc = tokenizer( batch, return_tensors='pt', padding=True, truncation=True, ) enc = enc.to(device) with torch.no_grad(): res = model(**enc) embeds.append(res.pooler_output.to('cpu')) embeds = torch.cat(embeds).numpy() np.save(dst, embeds) print(embeds.shape) ``` Then using `cuml.GaussianRandomProjection` to do an initial squeeze to 64d (which gets the embedding tensor small enough to fit onto a single GPU for the UMAP) - ```python @app.command() def random_projection(src: str, dst: str, dim: int = 64): """Random projection on an embedding matrix.""" rmm.reinitialize(managed_memory=True) embeds = np.load(src) rp = cuml.GaussianRandomProjection(n_components=dim) embeds = rp.fit_transform(embeds) np.save(dst, embeds) print(embeds.shape) ``` And then `cuml.UMAP` to get from 64d -> 2d - ```python @app.command() def umap( df_src: str, embeds_src: str, dst: str, n_neighbors: int = typer.Option(30), n_epochs: int = typer.Option(1000), negative_sample_rate: int = typer.Option(20), ): """UMAP to 2d.""" rmm.reinitialize(managed_memory=True) df = pd.read_parquet(df_src) embeds = np.load(embeds_src) embeds = embeds.astype('float16') print(embeds.shape) print(embeds.dtype) reducer = cuml.UMAP( n_neighbors=n_neighbors, n_epochs=n_epochs, negative_sample_rate=negative_sample_rate, verbose=True, ) x = reducer.fit_transform(embeds) df['x'] = x[:,0] df['y'] = x[:,1] df.to_parquet(dst) print(df) ```