# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """HEAD-QA: A Healthcare Dataset for Complex Reasoning""" import json import os import datasets _CITATION = """\ @inproceedings{vilares-gomez-rodriguez-2019-head, title = "{HEAD}-{QA}: A Healthcare Dataset for Complex Reasoning", author = "Vilares, David and G{\'o}mez-Rodr{\'i}guez, Carlos", booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", month = jul, year = "2019", address = "Florence, Italy", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P19-1092", doi = "10.18653/v1/P19-1092", pages = "960--966", abstract = "We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work.", } """ _DESCRIPTION = """\ HEAD-QA is a multi-choice HEAlthcare Dataset. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. They are designed by the Ministerio de Sanidad, Consumo y Bienestar Social. The dataset contains questions about the following topics: medicine, nursing, psychology, chemistry, pharmacology and biology. """ _HOMEPAGE = "https://aghie.github.io/head-qa/" _LICENSE = "MIT License" _URL = "https://drive.google.com/u/0/uc?export=download&id=1a_95N5zQQoUCq8IBNVZgziHbeM-QxG2t" _DIRS = {"es": "HEAD", "en": "HEAD_EN"} class HeadQA(datasets.GeneratorBasedBuilder): """HEAD-QA: A Healthcare Dataset for Complex Reasoning""" VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="es", version=VERSION, description="Spanish HEAD dataset"), datasets.BuilderConfig(name="en", version=VERSION, description="English HEAD dataset"), ] DEFAULT_CONFIG_NAME = "es" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "name": datasets.Value("string"), "year": datasets.Value("string"), "category": datasets.Value("string"), "qid": datasets.Value("int32"), "qtext": datasets.Value("string"), "ra": datasets.Value("int32"), "image": datasets.Image(), "answers": [ { "aid": datasets.Value("int32"), "atext": datasets.Value("string"), } ], } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_dir = dl_manager.download_and_extract(_URL) dir = _DIRS[self.config.name] data_lang_dir = os.path.join(data_dir, dir) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_lang_dir, f"train_{dir}.json")}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_lang_dir, f"test_{dir}.json")}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_lang_dir, f"dev_{dir}.json")}, ), ] def _generate_examples(self, data_dir, filepath): """Yields examples.""" with open(filepath, encoding="utf-8") as f: head_qa = json.load(f) for exam_id, exam in enumerate(head_qa["exams"]): content = head_qa["exams"][exam] name = content["name"].strip() year = content["year"].strip() category = content["category"].strip() for question in content["data"]: qid = int(question["qid"].strip()) qtext = question["qtext"].strip() ra = int(question["ra"].strip()) image_path = question["image"].strip() aids = [answer["aid"] for answer in question["answers"]] atexts = [answer["atext"].strip() for answer in question["answers"]] answers = [{"aid": aid, "atext": atext} for aid, atext in zip(aids, atexts)] id_ = f"{exam_id}_{qid}" yield id_, { "name": name, "year": year, "category": category, "qid": qid, "qtext": qtext, "ra": ra, "image": os.path.join(data_dir, image_path) if image_path else None, "answers": answers, }