# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Identifying character archetypes from movie scripts""" from __future__ import absolute_import, division, print_function import csv import os import datasets _CITATION = """\ """ _DESCRIPTION = """\ The character types identification dataset consists of movie scripts annotated with character archetypes (Hero, Villain, Mentor, etc.). """ _URLS = { "full_text": "https://drive.google.com/uc?export=download&id=1pivLkYl6l6_jJlQkHGsvziEn82GBapWc", # "repo": "https://github.com/ghomasHudson/character-type-identification/archive/master.zip", "repo": "https://github.com/ghomasHudson/character-type-identification/archive/refs/heads/master.zip" } class CharacterTypeID(datasets.GeneratorBasedBuilder): """Character Type Identification""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, citation=_CITATION, features=datasets.Features( { "document": { "id": datasets.Value("string"), "url": datasets.Value("string"), "file_size": datasets.Value("int32"), "word_count": datasets.Value("int32"), "start": datasets.Value("string"), "end": datasets.Value("string"), "summary": { "text": datasets.Value("string"), "url": datasets.Value("string"), "title": datasets.Value("string"), }, "text": datasets.Value("string"), }, "character_name": datasets.Value("string"), "unit_quality_score": datasets.Value("float32"), "character_type": datasets.ClassLabel(names=[ "Hero", "Villain/Antagonist", "Spouse/Partner/Lover of Hero", "Spouse/Partner/Lover of Villain", "Sidekick of Hero", "Sidekick of Villain", "Supporting role character of Hero", "Supporting role character of Villain", "Mentor", "No Applicable Type" ]) } ), homepage="https://github.com/ghomasHudson/character-type-identification", ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" dl_dir = dl_manager.download_and_extract(_URLS) dl_dir["repo"] = os.path.join(dl_dir["repo"], "character-type-identification-master") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"repo_dir": dl_dir["repo"], "full_text_dir": dl_dir["full_text"], "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"repo_dir": dl_dir["repo"], "full_text_dir": dl_dir["full_text"], "split": "test"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"repo_dir": dl_dir["repo"], "full_text_dir": dl_dir["full_text"], "split": "valid"}, ), ] def _generate_examples(self, repo_dir, full_text_dir, split): """Yields examples.""" documents = {} with open(os.path.join(repo_dir, "documents.csv"), encoding="utf-8") as f: reader = csv.DictReader(f) for row in reader: if row["set"] != split: continue documents[row["document_id"]] = row summaries = {} with open(os.path.join(repo_dir, "summaries.csv"), encoding="utf-8") as f: reader = csv.DictReader(f) for row in reader: if row["set"] != split: continue summaries[row["document_id"]] = row char_fn = "character_labels.csv" if split == "test": char_fn = "character_labels_gold.csv" with open(os.path.join(repo_dir, char_fn), encoding="utf-8") as f: reader = csv.DictReader(f) for id_, row in enumerate(reader): if row["set"] != split: continue document_id = row["document_id"] if document_id not in documents.keys(): print("NO KEY") document = documents[document_id] summary = summaries[document_id] full_text = open(os.path.join(full_text_dir, document_id + ".txt"), encoding="latin-1").read() res = { "document": { "id": document["document_id"], "url": document["script_url"], "file_size": document["script_file_size"], "word_count": document["script_word_count"], "start": document["script_start"], "end": document["script_end"], "summary": { "text": summary["summary"], "url": document["wiki_url"], "title": document["wiki_title"], }, "text": full_text, }, "character_name": row["character_name"], "unit_quality_score": row["unit_quality_score"], "character_type": row["character_type"] } yield id_, res