# coding=utf-8 # Copyright 2020 HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import json import datasets _DESCRIPTION = """\ The dataset for the variable-misuse task, described in the ICLR 2020 paper 'Global Relational Models of Source Code' [https://openreview.net/forum?id=B1lnbRNtwr] This is the public version of the dataset used in that paper. The original, used to produce the graphs in the paper, could not be open-sourced due to licensing issues. See the public associated code repository [https://github.com/VHellendoorn/ICLR20-Great] for results produced from this dataset. This dataset was generated synthetically from the corpus of Python code in the ETH Py150 Open dataset [https://github.com/google-research-datasets/eth_py150_open]. """ _HOMEPAGE_URL = "" _CITATION = """\ @inproceedings{DBLP:conf/iclr/HellendoornSSMB20, author = {Vincent J. Hellendoorn and Charles Sutton and Rishabh Singh and Petros Maniatis and David Bieber}, title = {Global Relational Models of Source Code}, booktitle = {8th International Conference on Learning Representations, {ICLR} 2020, Addis Ababa, Ethiopia, April 26-30, 2020}, publisher = {OpenReview.net}, year = {2020}, url = {https://openreview.net/forum?id=B1lnbRNtwr}, timestamp = {Thu, 07 May 2020 17:11:47 +0200}, biburl = {https://dblp.org/rec/conf/iclr/HellendoornSSMB20.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ _TRAIN_URLS = [ f"https://raw.githubusercontent.com/google-research-datasets/great/master/train/train__VARIABLE_MISUSE__SStuB.txt-{x:05d}-of-00300" for x in range(300) ] _TEST_URLS = [ f"https://raw.githubusercontent.com/google-research-datasets/great/master/eval/eval__VARIABLE_MISUSE__SStuB.txt-{x:05d}-of-00300" for x in range(300) ] _VALID_URLS = [ f"https://raw.githubusercontent.com/google-research-datasets/great/master/dev/dev__VARIABLE_MISUSE__SStuB.txt-{x:05d}-of-00300" for x in range(300) ] class GreatCode(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("int32"), "source_tokens": datasets.Sequence(datasets.Value("string")), "has_bug": datasets.Value("bool"), "error_location": datasets.Value("int32"), "repair_candidates": datasets.Sequence(datasets.Value("string")), "bug_kind": datasets.Value("int32"), "bug_kind_name": datasets.Value("string"), "repair_targets": datasets.Sequence(datasets.Value("int32")), "edges": [ [ { "before_index": datasets.Value("int32"), "after_index": datasets.Value("int32"), "edge_type": datasets.Value("int32"), "edge_type_name": datasets.Value("string"), } ] ], "provenances": [ { "datasetProvenance": { "datasetName": datasets.Value("string"), "filepath": datasets.Value("string"), "license": datasets.Value("string"), "note": datasets.Value("string"), } } ], }, ), supervised_keys=None, homepage=_HOMEPAGE_URL, citation=_CITATION, ) def _split_generators(self, dl_manager): train_path = dl_manager.download_and_extract(_TRAIN_URLS) valid_path = dl_manager.download_and_extract(_VALID_URLS) test_path = dl_manager.download_and_extract(_TEST_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "datapath": train_path, "datatype": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "datapath": valid_path, "datatype": "valid", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "datapath": test_path, "datatype": "test", }, ), ] def _generate_examples(self, datapath, datatype): for dp in datapath: with open(dp, "r", encoding="utf-8") as json_file: json_list = list(json_file) for example_counter, json_str in enumerate(json_list): result = json.loads(json_str) response = { "id": example_counter, "source_tokens": result["source_tokens"], "has_bug": result["has_bug"], "error_location": result["error_location"], "repair_candidates": [str(x) for x in result["repair_candidates"]], "bug_kind": result["bug_kind"], "bug_kind_name": result["bug_kind_name"], "repair_targets": result["repair_targets"], "edges": [ [ { "before_index": result["edges"][x][0], "after_index": result["edges"][x][1], "edge_type": result["edges"][x][2], "edge_type_name": result["edges"][x][3], } ] for x in range(len(result["edges"])) ], "provenances": result["provenances"], } yield example_counter, response