from pathlib import Path import numpy as np import matplotlib.pyplot as plt from typing import List from cleanvision import Imagelab from PIL import Image from datasets import Dataset, Features, Image as ImageFeature def images_with_deduplication(data_path): imagelab = Imagelab(data_path=data_path) # Automatically check for a predefined list of issues within your dataset imagelab.find_issues({"near_duplicates": {}, "exact_duplicates": {}}) # load names of all images in the dataset image_paths = list(Path(data_path).rglob("*.png")) image_paths = [str(path.resolve()) for path in image_paths] print(f"Number of images before deduplication: {len(image_paths)}") duplicate_sets = imagelab.info["near_duplicates"]["sets"] num_duplicates = sum([len(duplicate_set) - 1 for duplicate_set in duplicate_sets]) for duplicate_set in duplicate_sets: for i in range(len(duplicate_set)): if i > 0: image_name = duplicate_set[i] del image_paths[image_paths.index(image_name)] print(f"Number of images after deduplication: {len(image_paths)}") print(f"Number of images removed: {num_duplicates}") return image_paths def find_closest_pair(ref_timestamp, search_dir, threshold_ms=100): search_files = list(search_dir.glob("*")) search_timestamps = [int(f.stem.split("_")[0]) for f in search_files] diffs = np.abs(np.array(search_timestamps) - ref_timestamp) / 1e6 min_idx = np.argmin(diffs) if diffs[min_idx] <= threshold_ms: return str(search_files[min_idx]) return None def find_image_groups( base_dir, ref_subdir, search_subdirs: List[str], threshold_ms=100 ): base_path = Path(base_dir) ref_dir = base_path / ref_subdir search_dirs = [base_path / subdir for subdir in search_subdirs] # deduplicate images from the reference directory ref_dir_files = images_with_deduplication(ref_dir) pairs = [] for ref_file in ref_dir_files: ref_ts = int(ref_file.split("/")[-1].split("_")[0]) image_group = (ref_file,) for search_dir in search_dirs: assert search_dir.exists(), f"{search_dir} does not exist" match = find_closest_pair(ref_ts, search_dir, threshold_ms) if match: image_group += (match,) else: image_group += (None,) pairs.append(image_group) return pairs def visualize_images(image_tuple): n = len(image_tuple) fig, axes = plt.subplots(1, n, figsize=(6 * n, 4)) if n == 1: axes = [axes] for ax, img_path in zip(axes, image_tuple): if img_path is None: ax.axis("off") continue img = Image.open(img_path) if "DEPTH" in str(img_path): ax.imshow(img, cmap="viridis") elif "THERMAL" in str(img_path): ax.imshow(img, cmap="hot") else: img = Image.open(img_path) ax.imshow(img) ax.set_title(img_path.split("/")[-2]) plt.show() # prepare the dataset for upload to huggingface def create_image_dataset(image_tuples): """ Create a HuggingFace dataset from a list of image tuples. Args: image_tuples: List of tuples, each containing (color, depth, depth_16bit, thermal, thermal_rgb) image paths """ features = Features( { "color": ImageFeature(decode=True), "depth": ImageFeature(decode=True), "depth_16bit": ImageFeature(decode=True), "thermal": ImageFeature(decode=True), "thermal_rgb": ImageFeature(decode=True), } ) # Unzip the tuples into separate lists color_imgs, depth_imgs, depth_16bit_imgs, thermal_imgs, thermal_rgb_imgs = zip( *image_tuples ) dataset_dict = { "color": list(color_imgs), "depth": list(depth_imgs), "depth_16bit": list(depth_16bit_imgs), "thermal": list(thermal_imgs), "thermal_rgb": list(thermal_rgb_imgs), } dataset = Dataset.from_dict(dataset_dict, features=features) return dataset