import os from glob import glob import datasets _CITATION = """\ @software{HLS_Foundation_2023, author = {Phillips, Christopher and Roy, Sujit and Ankur, Kumar and Ramachandran, Rahul}, doi = {10.57967/hf/0956}, month = aug, title = {{HLS Foundation Burnscars Dataset}}, url = {https://huggingface.co/ibm-nasa-geospatial/hls_burn_scars}, year = {2023} } """ _DESCRIPTION = """\ This dataset contains Harmonized Landsat and Sentinel-2 imagery of burn scars and the associated masks for the years 2018-2021 over the contiguous United States. There are 804 512x512 scenes. Its primary purpose is for training geospatial machine learning models. """ _HOMEPAGE = "https://huggingface.co/datasets/ibm-nasa-geospatial/hls_burn_scars" _LICENSE = "cc-by-4.0" _URLS = { "hls_burn_scars": { "train/val": "https://huggingface.co/datasets/ibm-nasa-geospatial/hls_burn_scars/resolve/main/hls_burn_scars.tar.gz" } } class HLSBurnScars(datasets.GeneratorBasedBuilder): """MIT Scene Parsing Benchmark dataset.""" VERSION = datasets.Version("0.0.1") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="hls_burn_scars", version=VERSION, description=_DESCRIPTION), ] def _info(self): features = datasets.Features( { "image": datasets.Image(), "annotation": datasets.Image(), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): urls = _URLS[self.config.name] data_dirs = dl_manager.download_and_extract(urls) train_data = os.path.join(data_dirs['train/val'], "training") val_data = os.path.join(data_dirs['train/val'], "validation") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data": train_data, "split": "training", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "data": val_data, "split": "validation", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data": val_data, "split": "testing", }, ) ] def _generate_examples(self, data, split): files = glob(f"{data}/*_merged.tif") for idx, filename in enumerate(files): if filename.endswith("_merged.tif"): annotation_filename = filename.replace('_merged.tif', '.mask.tif') yield idx, { "image": {"path": filename}, "annotation": {"path": annotation_filename} }