import glob import os from functools import partial import datasets DS_NAMES = [ "coursera" ] VERSION = datasets.Version("0.0.1") class PublicSpeech(datasets.GeneratorBasedBuilder): """Speech dataset.""" BUILDER_CONFIGS = [ datasets.BuilderConfig(name=data_name, version=VERSION, description=f"Speech {data_name} dataset") for data_name in DS_NAMES ] def _info(self): return datasets.DatasetInfo( description="Hebrew speech datasets", features=datasets.Features( { "audio": datasets.Audio(sampling_rate=16000), "sentence": datasets.Value("string"), } ), supervised_keys=("audio", "sentence"), homepage="https://huggingface.co/datasets/imvladikon/hebrew_speech", citation="TODO", ) def _split_generators(self, dl_manager): downloader = partial( lambda split: dl_manager.download_and_extract(f"data/{self.config.name}/{split}.tar.gz"), ) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"root_path": downloader("train"), "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"root_path": downloader("dev"), "split": "dev"}, ), ] def _generate_examples(self, root_path, split): split_path = os.path.join(root_path, split) for wav in glob.glob(split_path + "/*.wav"): uid = os.path.splitext(os.path.basename(wav))[0] with open(os.path.join(split_path, f"{uid}.txt"), encoding="utf-8") as fin: text = fin.read() example = { "audio": wav, "sentence": text, } yield uid, example