{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"id": "95bd761a-fe51-4a8e-bc70-1365260ba5f8",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b0859483-5e19-4280-9f53-0d00a6f22d34",
"metadata": {},
"outputs": [],
"source": [
"df_pdbbind = pd.read_parquet('data/pdbbind.parquet')\n",
"df_pdbbind = df_pdbbind[['seq','smiles','affinity_uM']]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f30732b7-7444-47ad-84e7-566e7a6f2f8e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" seq | \n",
" smiles | \n",
" affinity_uM | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... | \n",
" CCCCCCCCCCCCCCCCCCCC(=O)O | \n",
" 0.026 | \n",
"
\n",
" \n",
" 1 | \n",
" APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... | \n",
" OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... | \n",
" 500.000 | \n",
"
\n",
" \n",
" 2 | \n",
" VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... | \n",
" COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... | \n",
" 0.023 | \n",
"
\n",
" \n",
" 3 | \n",
" AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... | \n",
" OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... | \n",
" 6.430 | \n",
"
\n",
" \n",
" 4 | \n",
" YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... | \n",
" CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... | \n",
" 0.185 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" seq \\\n",
"0 MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... \n",
"1 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
"2 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
"3 AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... \n",
"4 YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... \n",
"\n",
" smiles affinity_uM \n",
"0 CCCCCCCCCCCCCCCCCCCC(=O)O 0.026 \n",
"1 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.000 \n",
"2 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.023 \n",
"3 OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... 6.430 \n",
"4 CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... 0.185 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_pdbbind.head()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "2787b9fd-3d6f-4ae3-a3ad-d3539b72782b",
"metadata": {},
"outputs": [],
"source": [
"from rdkit import Chem\n",
"from rdkit.Chem import MACCSkeys\n",
"import numpy as np\n",
"\n",
"def get_maccs(smi):\n",
" try:\n",
" mol = Chem.MolFromSmiles(smi)\n",
" arr = np.packbits([0 if c=='0' else 1 for c in MACCSkeys.GenMACCSKeys(mol).ToBitString()])\n",
" return np.pad(arr,(0,3)).view(np.uint32)\n",
" except Exception:\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "d1abe1c8-ac66-4289-8964-367a5b18528d",
"metadata": {},
"outputs": [],
"source": [
"df_bindingdb = pd.read_parquet('data/bindingdb.parquet')\n",
"df_bindingdb = df_bindingdb[['seq','Ligand SMILES','affinity_uM']].rename(columns={'Ligand SMILES': 'smiles'})"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "988bab9c-5147-44e2-92ef-902eaf3c5a90",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" seq | \n",
" smiles | \n",
" affinity_uM | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
" COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 | \n",
" 0.00024 | \n",
"
\n",
" \n",
" 1 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
" O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... | \n",
" 0.00025 | \n",
"
\n",
" \n",
" 2 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
" O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... | \n",
" 0.00041 | \n",
"
\n",
" \n",
" 3 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
" OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... | \n",
" 0.00080 | \n",
"
\n",
" \n",
" 4 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
" OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... | \n",
" 0.00099 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" seq \\\n",
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"\n",
" smiles affinity_uM \n",
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 0.00024 \n",
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... 0.00025 \n",
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... 0.00041 \n",
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... 0.00080 \n",
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... 0.00099 "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_bindingdb.head()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "d7bfee2a-c4e6-48c9-b0c6-52f6a69c7453",
"metadata": {},
"outputs": [],
"source": [
"df_moad = pd.read_parquet('data/moad.parquet')\n",
"df_moad = df_moad[['seq','smiles','affinity_uM']]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "25553199-1715-40fb-9260-427bdd6c3706",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" seq | \n",
" smiles | \n",
" affinity_uM | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... | \n",
" NP(=O)(N)O | \n",
" 0.000620 | \n",
"
\n",
" \n",
" 1 | \n",
" NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... | \n",
" CC(=O)NO | \n",
" 2.600000 | \n",
"
\n",
" \n",
" 2 | \n",
" MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... | \n",
" C#CCCOP(=O)(O)OP(=O)(O)O | \n",
" 0.580000 | \n",
"
\n",
" \n",
" 3 | \n",
" MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... | \n",
" C#CCOP(=O)(O)OP(=O)(O)O | \n",
" 0.770000 | \n",
"
\n",
" \n",
" 4 | \n",
" MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV... | \n",
" c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3... | \n",
" 15.000000 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 25420 | \n",
" MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... | \n",
" None | \n",
" 127.226463 | \n",
"
\n",
" \n",
" 25421 | \n",
" MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... | \n",
" None | \n",
" 127.226463 | \n",
"
\n",
" \n",
" 25422 | \n",
" MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... | \n",
" None | \n",
" 169.204738 | \n",
"
\n",
" \n",
" 25423 | \n",
" MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... | \n",
" None | \n",
" 169.204738 | \n",
"
\n",
" \n",
" 25424 | \n",
" MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... | \n",
" None | \n",
" 169.204738 | \n",
"
\n",
" \n",
"
\n",
"
25425 rows × 3 columns
\n",
"
"
],
"text/plain": [
" seq \\\n",
"0 NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... \n",
"1 NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... \n",
"2 MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... \n",
"3 MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... \n",
"4 MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV... \n",
"... ... \n",
"25420 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
"25421 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
"25422 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
"25423 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
"25424 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
"\n",
" smiles affinity_uM \n",
"0 NP(=O)(N)O 0.000620 \n",
"1 CC(=O)NO 2.600000 \n",
"2 C#CCCOP(=O)(O)OP(=O)(O)O 0.580000 \n",
"3 C#CCOP(=O)(O)OP(=O)(O)O 0.770000 \n",
"4 c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3... 15.000000 \n",
"... ... ... \n",
"25420 None 127.226463 \n",
"25421 None 127.226463 \n",
"25422 None 169.204738 \n",
"25423 None 169.204738 \n",
"25424 None 169.204738 \n",
"\n",
"[25425 rows x 3 columns]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_moad"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "b2c936bc-cdc8-4bc1-b92d-f8755fd65f0a",
"metadata": {},
"outputs": [],
"source": [
"df_biolip = pd.read_parquet('data/biolip.parquet')\n",
"df_biolip = df_biolip[['seq','smiles','affinity_uM']]"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "cee93018-601d-458b-af44-bd978da7a2bc",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" seq | \n",
" smiles | \n",
" affinity_uM | \n",
"
\n",
" \n",
" \n",
" \n",
" 38 | \n",
" PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC... | \n",
" CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C | \n",
" 1.5000 | \n",
"
\n",
" \n",
" 43 | \n",
" MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... | \n",
" OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c... | \n",
" 24.0000 | \n",
"
\n",
" \n",
" 53 | \n",
" EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKV... | \n",
" O[C@@H]1[C@@H](CO[P@](=O)(O[P@@](=O)(C(CCCC(P(... | \n",
" 6.0000 | \n",
"
\n",
" \n",
" 54 | \n",
" MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... | \n",
" CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(... | \n",
" 10.0000 | \n",
"
\n",
" \n",
" 55 | \n",
" MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... | \n",
" c1ccccc1 | \n",
" 175.0000 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 105118 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... | \n",
" O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... | \n",
" 0.0045 | \n",
"
\n",
" \n",
" 105119 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... | \n",
" O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... | \n",
" 0.0045 | \n",
"
\n",
" \n",
" 105124 | \n",
" SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... | \n",
" O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... | \n",
" 125.0000 | \n",
"
\n",
" \n",
" 105133 | \n",
" ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... | \n",
" CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... | \n",
" 2.0000 | \n",
"
\n",
" \n",
" 105138 | \n",
" KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... | \n",
" CC[Se]C(=N)N | \n",
" 0.0390 | \n",
"
\n",
" \n",
"
\n",
"
13645 rows × 3 columns
\n",
"
"
],
"text/plain": [
" seq \\\n",
"38 PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC... \n",
"43 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
"53 EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKV... \n",
"54 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
"55 MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... \n",
"... ... \n",
"105118 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
"105119 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
"105124 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
"105133 ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... \n",
"105138 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
"\n",
" smiles affinity_uM \n",
"38 CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C 1.5000 \n",
"43 OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c... 24.0000 \n",
"53 O[C@@H]1[C@@H](CO[P@](=O)(O[P@@](=O)(C(CCCC(P(... 6.0000 \n",
"54 CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(... 10.0000 \n",
"55 c1ccccc1 175.0000 \n",
"... ... ... \n",
"105118 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
"105119 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
"105124 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.0000 \n",
"105133 CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... 2.0000 \n",
"105138 CC[Se]C(=N)N 0.0390 \n",
"\n",
"[13645 rows x 3 columns]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_biolip"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "195f92db-fe06-4d03-8500-8d6c310a3347",
"metadata": {},
"outputs": [],
"source": [
"df_all = pd.concat([df_pdbbind,df_bindingdb,df_moad,df_biolip]).reset_index()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "d25c1e24-6566-4944-a0b4-944b3c8dbc6f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2574545"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(df_all)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "c8287da2-cfdf-4d89-b175-f4c6b38ff8ac",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO: Pandarallel will run on 32 workers.\n",
"INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n"
]
}
],
"source": [
"from pandarallel import pandarallel\n",
"pandarallel.initialize()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "de5ffc4a-afb7-4a26-8d57-509c2278d750",
"metadata": {},
"outputs": [],
"source": [
"df_all['maccs'] = df_all['smiles'].parallel_apply(get_maccs)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "59a6706d-dab9-4ee0-8ef6-33537a3622a4",
"metadata": {},
"outputs": [],
"source": [
"df_all.to_parquet('data/all_maccs.parquet')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "4ccf2ee5-d369-4c0e-bb91-792765d661bf",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "8a4bbb18-e62f-4774-ac6b-8a1be68204c1",
"metadata": {},
"outputs": [],
"source": [
"df_all = pd.read_parquet('data/all_maccs.parquet')\n",
"df_all = df_all.dropna().reset_index(drop=True)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "d210fe56-a7eb-4adc-a77a-14c0c6d0034e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2568079"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(df_all)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "d12b365d-98bd-4b61-b836-1a08d2e55418",
"metadata": {},
"outputs": [],
"source": [
"maccs = df_all['maccs'].to_numpy()\n",
"#df_reindex[df_reindex.duplicated(keep='first')].reset_index()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "80c15210-1af3-436e-970b-f81fc596fb41",
"metadata": {},
"outputs": [],
"source": [
"df_maccs = pd.DataFrame(np.vstack(maccs))"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "30c314b8-8fe7-48ae-a2b8-149de1471b0c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 int64\n",
"1 int64\n",
"2 int64\n",
"3 int64\n",
"4 int64\n",
"5 int64\n",
"dtype: object"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_maccs.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "70a0a820-4d0c-4472-af96-9c301c0ab204",
"metadata": {},
"outputs": [],
"source": [
"df_expand = pd.concat([df_all[['seq','smiles','affinity_uM']],df_maccs],axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "13d092fa-5625-40d0-b7ec-e3405ea20279",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" seq | \n",
" smiles | \n",
" affinity_uM | \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
" 3 | \n",
" 4 | \n",
" 5 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... | \n",
" CCCCCCCCCCCCCCCCCCCC(=O)O | \n",
" 0.0260 | \n",
" 0 | \n",
" 0 | \n",
" 805306368 | \n",
" 272271360 | \n",
" 890245320 | \n",
" 136 | \n",
"
\n",
" \n",
" 1 | \n",
" APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... | \n",
" OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... | \n",
" 500.0000 | \n",
" 2147483648 | \n",
" 3242590208 | \n",
" 1914732547 | \n",
" 994116706 | \n",
" 3748288829 | \n",
" 124 | \n",
"
\n",
" \n",
" 2 | \n",
" VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... | \n",
" COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... | \n",
" 0.0230 | \n",
" 131072 | \n",
" 1109655552 | \n",
" 2123376961 | \n",
" 3477340882 | \n",
" 2951175957 | \n",
" 252 | \n",
"
\n",
" \n",
" 3 | \n",
" AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... | \n",
" OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... | \n",
" 6.4300 | \n",
" 0 | \n",
" 6685696 | \n",
" 2033191680 | \n",
" 1345701844 | \n",
" 2133187096 | \n",
" 220 | \n",
"
\n",
" \n",
" 4 | \n",
" YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... | \n",
" CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... | \n",
" 0.1850 | \n",
" 1048576 | \n",
" 1107427332 | \n",
" 2109513024 | \n",
" 4081492984 | \n",
" 4026260436 | \n",
" 252 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 2568074 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... | \n",
" O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... | \n",
" 0.0045 | \n",
" 65536 | \n",
" 393216 | \n",
" 964698368 | \n",
" 369403648 | \n",
" 4284858000 | \n",
" 252 | \n",
"
\n",
" \n",
" 2568075 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... | \n",
" O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... | \n",
" 0.0045 | \n",
" 65536 | \n",
" 393216 | \n",
" 964698368 | \n",
" 369403648 | \n",
" 4284858000 | \n",
" 252 | \n",
"
\n",
" \n",
" 2568076 | \n",
" SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... | \n",
" O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... | \n",
" 125.0000 | \n",
" 67108864 | \n",
" 1115688962 | \n",
" 1771869508 | \n",
" 4018431718 | \n",
" 3744193341 | \n",
" 124 | \n",
"
\n",
" \n",
" 2568077 | \n",
" ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... | \n",
" CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... | \n",
" 2.0000 | \n",
" 2097152 | \n",
" 137216 | \n",
" 958148868 | \n",
" 1746307978 | \n",
" 2067783280 | \n",
" 204 | \n",
"
\n",
" \n",
" 2568078 | \n",
" KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... | \n",
" CC[Se]C(=N)N | \n",
" 0.0390 | \n",
" 16 | \n",
" 6144 | \n",
" 537396736 | \n",
" 2170880 | \n",
" 1510015504 | \n",
" 192 | \n",
"
\n",
" \n",
"
\n",
"
2568079 rows × 9 columns
\n",
"
"
],
"text/plain": [
" seq \\\n",
"0 MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... \n",
"1 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
"2 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
"3 AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... \n",
"4 YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... \n",
"... ... \n",
"2568074 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
"2568075 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
"2568076 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
"2568077 ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... \n",
"2568078 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
"\n",
" smiles affinity_uM \\\n",
"0 CCCCCCCCCCCCCCCCCCCC(=O)O 0.0260 \n",
"1 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.0000 \n",
"2 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.0230 \n",
"3 OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... 6.4300 \n",
"4 CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... 0.1850 \n",
"... ... ... \n",
"2568074 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
"2568075 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
"2568076 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.0000 \n",
"2568077 CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... 2.0000 \n",
"2568078 CC[Se]C(=N)N 0.0390 \n",
"\n",
" 0 1 2 3 4 5 \n",
"0 0 0 805306368 272271360 890245320 136 \n",
"1 2147483648 3242590208 1914732547 994116706 3748288829 124 \n",
"2 131072 1109655552 2123376961 3477340882 2951175957 252 \n",
"3 0 6685696 2033191680 1345701844 2133187096 220 \n",
"4 1048576 1107427332 2109513024 4081492984 4026260436 252 \n",
"... ... ... ... ... ... ... \n",
"2568074 65536 393216 964698368 369403648 4284858000 252 \n",
"2568075 65536 393216 964698368 369403648 4284858000 252 \n",
"2568076 67108864 1115688962 1771869508 4018431718 3744193341 124 \n",
"2568077 2097152 137216 958148868 1746307978 2067783280 204 \n",
"2568078 16 6144 537396736 2170880 1510015504 192 \n",
"\n",
"[2568079 rows x 9 columns]"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_expand"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "30f7fff7-3cfe-41c8-97c9-666f3e256222",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['seq', 'smiles', 'affinity_uM', 0, 1, 2, 3, 4, 5], dtype='object')"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_expand.columns"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "16d2b26e-984f-4c71-af19-a3e711ed9ca2",
"metadata": {},
"outputs": [],
"source": [
"df_reindex = df_expand.set_index([0,1,2,3,4,5,'seq'])"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "27fa2150-8152-444b-ba5b-24bea39fc098",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['smiles', 'affinity_uM'], dtype='object')"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_reindex.columns"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "89edacbc-52f3-4a76-90b0-95273f5e53b3",
"metadata": {},
"outputs": [],
"source": [
"df_nr = df_reindex[~df_reindex.duplicated(keep='first')].reset_index()\n",
"df_nr = df_nr.drop(columns=[0,1,2,3,4,5])"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "6a704c5e-68a6-418f-bcad-8688a13ca1d6",
"metadata": {},
"outputs": [],
"source": [
"# final sanity checks"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "0cad3882-975d-4693-aad1-63ec26646bd0",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/ccs/proj/stf006/glaser/conda-envs/dask/lib/python3.9/site-packages/pandas/core/arraylike.py:358: RuntimeWarning: divide by zero encountered in log\n",
" result = getattr(ufunc, method)(*inputs, **kwargs)\n"
]
}
],
"source": [
"df_nr['neg_log10_affinity_M'] = 6-np.log(df_nr['affinity_uM'])/np.log(10)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "c200e29a-3f14-41f4-b620-ccce0eb0d5ce",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" seq | \n",
" smiles | \n",
" affinity_uM | \n",
" neg_log10_affinity_M | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... | \n",
" CCCCCCCCCCCCCCCCCCCC(=O)O | \n",
" 0.0260 | \n",
" 7.585027 | \n",
"
\n",
" \n",
" 1 | \n",
" APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... | \n",
" OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... | \n",
" 500.0000 | \n",
" 3.301030 | \n",
"
\n",
" \n",
" 2 | \n",
" VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... | \n",
" COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... | \n",
" 0.0230 | \n",
" 7.638272 | \n",
"
\n",
" \n",
" 3 | \n",
" AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... | \n",
" OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... | \n",
" 6.4300 | \n",
" 5.191789 | \n",
"
\n",
" \n",
" 4 | \n",
" YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... | \n",
" CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... | \n",
" 0.1850 | \n",
" 6.732828 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1929143 | \n",
" IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... | \n",
" O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(... | \n",
" 8.0000 | \n",
" 5.096910 | \n",
"
\n",
" \n",
" 1929144 | \n",
" IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... | \n",
" CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H... | \n",
" 8.0000 | \n",
" 5.096910 | \n",
"
\n",
" \n",
" 1929145 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... | \n",
" O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... | \n",
" 0.0045 | \n",
" 8.346787 | \n",
"
\n",
" \n",
" 1929146 | \n",
" ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... | \n",
" CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... | \n",
" 2.0000 | \n",
" 5.698970 | \n",
"
\n",
" \n",
" 1929147 | \n",
" KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... | \n",
" CC[Se]C(=N)N | \n",
" 0.0390 | \n",
" 7.408935 | \n",
"
\n",
" \n",
"
\n",
"
1929148 rows × 4 columns
\n",
"
"
],
"text/plain": [
" seq \\\n",
"0 MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... \n",
"1 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
"2 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
"3 AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... \n",
"4 YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... \n",
"... ... \n",
"1929143 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
"1929144 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
"1929145 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
"1929146 ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... \n",
"1929147 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
"\n",
" smiles affinity_uM \\\n",
"0 CCCCCCCCCCCCCCCCCCCC(=O)O 0.0260 \n",
"1 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.0000 \n",
"2 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.0230 \n",
"3 OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... 6.4300 \n",
"4 CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... 0.1850 \n",
"... ... ... \n",
"1929143 O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(... 8.0000 \n",
"1929144 CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H... 8.0000 \n",
"1929145 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
"1929146 CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... 2.0000 \n",
"1929147 CC[Se]C(=N)N 0.0390 \n",
"\n",
" neg_log10_affinity_M \n",
"0 7.585027 \n",
"1 3.301030 \n",
"2 7.638272 \n",
"3 5.191789 \n",
"4 6.732828 \n",
"... ... \n",
"1929143 5.096910 \n",
"1929144 5.096910 \n",
"1929145 8.346787 \n",
"1929146 5.698970 \n",
"1929147 7.408935 \n",
"\n",
"[1929148 rows x 4 columns]"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_nr"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "7f4027a2-0a5f-47bf-8a34-0c6a73b9b112",
"metadata": {},
"outputs": [],
"source": [
"df = df_nr[np.isfinite(df_nr['neg_log10_affinity_M'])].copy()"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "eb99774f-9bcc-454d-b5e5-a8470223d6ca",
"metadata": {},
"outputs": [],
"source": [
"from rdkit import Chem\n",
"def make_canonical(smi):\n",
" try:\n",
" return Chem.MolToSmiles(Chem.MolFromSmiles(smi))\n",
" except:\n",
" return smi"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "4d44bd8e-f2e1-44b4-aea7-40b4437baf44",
"metadata": {},
"outputs": [],
"source": [
"df['smiles_can'] = df['smiles'].parallel_apply(make_canonical)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "07ffdeb1-f4fa-4776-9fea-a18439e03d2e",
"metadata": {},
"outputs": [],
"source": [
"df = df[(df['neg_log10_affinity_M']>0) & (df['neg_log10_affinity_M']<15)].reset_index()"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "8f949038-d07d-4d3a-a47e-b825cc9018ca",
"metadata": {},
"outputs": [],
"source": [
"from sklearn.preprocessing import StandardScaler"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "0c027988-0b44-4010-ad61-7d70eead1654",
"metadata": {},
"outputs": [],
"source": [
"scaler = StandardScaler()"
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "6aeba020-b6ff-4633-902e-4df74463eb2f",
"metadata": {},
"outputs": [],
"source": [
"df['affinity'] = scaler.fit_transform(df['neg_log10_affinity_M'].values.reshape(-1,1))"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "91196eee-5fd0-4aa4-927a-5c1a3f436ac8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([6.51286529]), array([2.4379995]))"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"scaler.mean_, scaler.var_"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "56269dcb-e691-4759-949d-7bfdd02f5fd4",
"metadata": {},
"outputs": [],
"source": [
"df = df.drop(columns='index')"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "c6c64066-4032-4247-a8b9-00388176cc7b",
"metadata": {},
"outputs": [],
"source": [
"df.to_parquet('data/all.parquet')"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "469cf0dd-7b87-4245-973c-2a445e1fcca9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['seq', 'smiles', 'affinity_uM', 'neg_log10_affinity_M', 'smiles_can',\n",
" 'affinity'],\n",
" dtype='object')"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.columns"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "d91c0d91-474c-4ab2-9a5e-3b7861f7a832",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfw0lEQVR4nO3dfZQdVZnv8e+PRC4xQRCRRhIkqGEcxoiaFlBc0o3iCuAlOOIIRjBgJkbNIF5wjKAIIldciuPLgDGDGFG0HeXFjEQwA7boAHOT+EITBIwQnSSQyIuRhghGnvtHVUNxck531enTdaq7f5+1zupTtfeu8/Tbec7eVbW3IgIzM7M8dmp3AGZmNno4aZiZWW5OGmZmlpuThpmZ5eakYWZmuU1sdwAjbc8994zp06c31fbRRx9l8uTJrQ2ohaoeHzjGVqh6fFD9GKseH1QrxjVr1jwQEc+vWxgRY/oxa9asaNaPf/zjptuWoerxRTjGVqh6fBHVj7Hq8UVUK0ZgdTR4T/XwlJmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpabk4aZmeU25qcRsbFj+uJrn3q+/sJj2hiJ2fjlnoaZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVlupScNSbMl3SVpnaTFdcrnSLpN0i8lrZb0urxtzcxsZJWaNCRNAC4GjgIOBE6UdGBNtRuAgyLiFcCpwKUF2pqZ2Qgqu6dxMLAuIu6JiCeAHmBOtkJE9EdEpJuTgcjb1szMRpaefn8u4cWk44HZETE/3T4JOCQiFtXUewvwKWAv4JiIuCVv27RsAbAAoKOjY1ZPT09T8fb39zNlypSm2pah6vFBa2Ps27j1qeczp+7WkmNC9X+OVY8Pqh9j1eODasXY3d29JiI665WVvZ6G6uzbIWtFxNXA1ZJeD5wPvDFv27T9UmApQGdnZ3R1dTUVbG9vL822LUPV44PWxjgvu57G3NYcE6r/c6x6fFD9GKseH4yOGKH84akNwL6Z7WnApkaVI+Im4MWS9iza1szMWq/spLEKmCFpf0k7AycAy7MVJL1EktLnrwJ2Bh7M09asGX0btzJ98bXPWBnQzOordXgqIrZLWgRcD0wALouItZIWpuVLgLcCJ0v6C7ANeHt6Yrxu2zLjNzMb70pfIzwiVgAravYtyTz/NPDpvG3NzKw8viPczMxyc9IwM7PcnDTMzCy30s9pmI1V2auv1l94TBsjMRs57mmYmVluThpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5VZ60pA0W9JdktZJWlynfK6k29LHzZIOypStl9Qn6ZeSVpcbuZmZTSzzxSRNAC4GjgQ2AKskLY+IOzLV7gUOj4iHJR0FLAUOyZR3R8QDpQVtZmZPKbuncTCwLiLuiYgngB5gTrZCRNwcEQ+nm7cC00qO0czMGlBElPdi0vHA7IiYn26fBBwSEYsa1D8TeGmm/r3Aw0AAX4mIpQ3aLQAWAHR0dMzq6elpKt7+/n6mTJnSVNsyVD0+aG2MfRu3PvV85tTdWnJMgC0PbWXztuEft1F8w417vP2eR0LV44Nqxdjd3b0mIjrrlZU6PAWozr66WUtSN/Bu4HWZ3YdFxCZJewErJd0ZETftcMAkmSwF6OzsjK6urqaC7e3tpdm2Zah6fNDaGOctvvap5+vntuaYAF+64vtc1Ddx2MdtFN9w4x5vv+eRUPX4YHTECOUPT20A9s1sTwM21VaS9HLgUmBORDw4sD8iNqVftwBXkwx3mZlZScpOGquAGZL2l7QzcAKwPFtB0guBq4CTIuLuzP7JknYdeA68Cbi9tMjNzKzc4amI2C5pEXA9MAG4LCLWSlqYli8BzgGeB1wiCWB7OrbWAVyd7psIfCsiriszfjOz8a7scxpExApgRc2+JZnn84H5ddrdAxxUu9/MzMrjO8LNzCw3Jw0zM8vNScPMzHJz0jAzs9ycNMzMLDcnDTMzy63QJbeSjoyIlSMVjFmVTM9O/3HhMW2MxKw6ivY0rk/XwfiQpOePSERmZlZZRW/uOwJ4D3A+cL6kq0hmm/1JyyMza4Ns78LMdlSopxERvRFxIjAV+BjQCfxY0q8lfUDSc0ciSDMzq4amToRHxIMR8ZmIOIBkFb4HgM8BGyUtkzSzlUGajVfTF19L38at7gFZZQzr6ilJRwOnAYcCW4DLgcOBn0t67/DDMzOzKimcNCTtLensdBW9HwC7A+8E9o2IhcBLgK+QzFZrZmZjSNFLbq8E3gz8GfgmcElErM3WiYi/SvoW8L6WRWlmZpVQ9OqpGcDpwDcion+Qen1Ad7NBmVWZ79+w8axo0ngzcF9E/KW2QNJEYJ+I+H1EPAL4MlwzszGm6DmNe4FXNig7KC03M7MxqmhPQ4OUPQt4chixmDXFw0Vm5RkyaUjaHdgjs2uqpBfVVJsEvAu4v3WhmZlZ1eTpaXwA+DgQ6eN7DeoprWdmZmNUnqRxDbCeJClcBnwS+G1NnceBOyLitlYGZ2Zm1TJk0oiIXwG/ApAUwLUR8cBIB2ZWJZ7GwyxR6ER4RHx9pAIxM7Pqy3Mi/EbgfRFxZ/p8MBERbxjieLOBLwATgEsj4sKa8rnAh9PNfuC9aW9nyLZmZjay8vQ0spfZ7kRyMjxP3R0LpQnAxSQz424AVklaHhF3ZKrdCxweEQ9LOgpYChySs61ZJRQdzvJlwzZa5Dmn0Z153jXM1zsYWBcR9wBI6gHmAE+98UfEzZn6twLT8rY1G018nsRGI0UM1nFo8YtJxwOzI2J+un0ScEhELGpQ/0zgpRExv0hbSQuABQAdHR2zenp6moq3v7+fKVOmNNW2DFWPD1obY9/GrU89nzl1tyH357Xloa1s3tZcTI3iGE792jodk2Dztua+t7JU/W+x6vFBtWLs7u5eExGd9crynNN4fZEXi4ibBjtcvSYNXrcbeDfwuqJtI2IpybAWnZ2d0dXVNUhIjfX29tJs2zJUPT5obYzzskM4c7uG3J/Xl674Phf1FZ0cYfA4Gup7NLNR/zVrj3nGzO1c1Dexqe+tLFX/W6x6fDA6YoR85zR6Gfw8xgCl9SYMUmcDsG9mexqwaYcDSS8HLgWOiogHi7Q1M7ORkydptHKK81XADEn7AxuBE4B3ZCtIeiFwFXBSRNxdpK1Z2XxewsabPCfCWzbFeURsl7QIuJ6kR3JZRKyVtDAtX0Ky4t/zgEskAWyPiM5GbVsVm5mZDa25gdxhiIgVwIqafUsyz+cD8/O2NWvEl7GatV7pN/eZmdnoVerNfWZmNrqVfXOfmZmNYkWXezUzs3Gs8InwdCW/DwKvAaaSXP56M/D5iPhjK4MzM7NqKdTTkHQQ8BvgI8AuJPM+7QKcBdwtaWbLIzQzs8oo2tP4IvAg0BkRvxvYKWk6cB3wJaCrVcGZFeWb7cxGVtFzGq8GPpZNGAARsZ5kffCDWxSXmZlVUNGk8SDJeuD1/DktNzOzMapo0vgy8CFJu2R3SpoEnEmySJKZmY1Ree4I/0R2E9gP+L2kFcBmoAM4GtgGPHskgjSzZ/IUKdYueU6Ef7TB/pPr7DubZMJBMzMbg/LcEe4bAM3MDPAd4WZmVoCThpmZ5VY4aUhaIOkXkh6T9Nfax0gEaWZm1VB0GpGTSe76XkUyfcjXgG8CfwJ+C3yicWszMxvtik4jcjrwKeB8ktX1LomIn0t6LtCLb+6zihpsepEzPGOaWW5Fh6dmADcBT6aPnQEi4mHgAuADLY3OzMwqpWhPYxuwU0SEpPuBFwG3pmX9wD6tDM6sEU9MaNYeRZNGH/AS4D+BnwJnSboX2A6cC9zZ0ujMzKxSiiaNpSS9C4CPkSSPn6XbjwDHtSYsMzOrokJJIyK+k3m+TtLfAa8FJgE3R8QDLY7PbNzx0JtV2bBu7ouIRyNiZUQsz5swJM2WdJekdZIW1yl/qaRbJD0u6cyasvWS+iT9UtLq4cRuZmbFNbNG+ASSyQpr1wj/RkQMenNf2vZi4EhgA7BK0vKIuCNT7SHgNBoPdXW7R2Nm1h6Fkoak/YDrgQNI3vQ3AzNJ7tn4sKTZtav61TgYWBcR96TH6wHmkKw1DkBEbAG2SPJ8z2YZHrayKlBE5K8s/QcwCzg+Im7O7D8M+C6wOiKOHaT98cDsiJifbp8EHBIRi+rUPRfoj4jPZvbdCzwMBPCViFja4HUWAAsAOjo6ZvX09OT+HrP6+/uZMmVKU23LUPX4oLUx9m3c2pLj1OqYBJu3jcihW2Ko+GZO3a28YBqo+t9i1eODasXY3d29JiI665UVHZ46AnhfNmEARMR/SToL+Nch2qvOvvxZCw6LiE2S9gJWSrozIm7a4YBJMlkK0NnZGV1dXQVe4mm9vb0027YMVY8PWhvjvBH6pH3GzO1c1Fd4pLY0Q8W3fm5XecE0UPW/xarHB6MjRiieNPqBLQ3KtgCPDdF+A7BvZnsasCnvi0fEpvTrFklXkwx37ZA0rP0GhlLOmLmdrvaGYmYtVPTqqW8CCxuUvQe4fIj2q4AZkvaXtDNwArA8zwtLmixp14HnwJuA23NFbWZmLZFnjfBTM5u/Ad4mqQ+4kqfXCD8e2BX44WDHiojtkhaRnEyfAFwWEWslLUzLl0jaG1gNPAd4UtLpwIHAnsDVkgbi/lZEXFfgezUzs2HKMzx1aZ1904C/q7P/YmDJYAeLiBXAipp9SzLP70+PX+tPwEFDBWtmZiMnT9LYf8SjsHEje9no+gt9VbXZaDNk0hjivguzlmh0D4ITi1m1NHWdoaSXAYcDe5AsvHRTRPiktJnZGFf0jvCJwDLgRJ55z0VI+hYwb6ipRMzMbPQqesntx4F/AM4hOdcxKf16DvD29KuZmY1RRYen3gmcHxEXZPb9DrggnYzwFJLEYmZmY1DRnsY+wC0Nym7Gy72amY1pRZPGJuCwBmWvpcCUIGZmNvoUHZ66Ajhb0pPp8/uAvUmmAzkb+HRrwzMzsyopmjTOJVkj/Lz0+QAB3073m5nZGFV0jfDtwDskXQC8nuQ+jYeAn9SsvmdmbeA77m2k5U4a6ay095Pci7EcWDtiUZmZWSXlThoR8YSk7cCfRzAeMyvIy8BamYpePXUNyTToZmY2DhU9Ef5D4IuSvkeSQO6jZrnWiLixNaGZmVnVFE0aV6Zf/z59DAiSK6iCZHElMzMbg4omje4RicKsAY/Xm1VL0UtufwIg6TnAy4CpwEbg9oj4U+vDMzOzKim8noakc4AzgCk8PSTVL+kzEfHJFsdnZmYVUnQ9jfOAj5GsG94DbAY6SNbXOE/SxIg4t9VBmplZNRTtafwjcFFEfCizby1wo6StwAKeOb2ImZmNIUXv09gNuL5B2XVpuZmZjVFFk8Z/A69uUPbqtNzMzMaooknjNOBUSR+SNF3SpPTrPwOnAosk7TTwqHcASbMl3SVpnaTFdcpfKukWSY9LOrNIWzMzG1lFz2ncln69MH1kCejLbEft8dMlYS8GjgQ2AKskLa+ZIfchkuR0XBNtzWwIngnXhqNo0vgENdOGFHQwsC4i7gGQ1APMAZ5644+ILcAWSbV/zUO2NTOzkaWI4eSAgi8mHQ/Mjoj56fZJwCERsahO3XOB/oj4bBNtF5BcyUVHR8esnp6epuLt7+9nypQpTbUtQ5Xj69u4FYCOSbDXHrvtsB9g5tT6+8vWMQk2b2vbyw+p2fiyP9+sRr+D4ajy3yJUPz6oVozd3d1rIqKzXlnhm/uGSXX25c1audtGxFJgKUBnZ2d0dXXlfIln6u3tpdm2ZahyfPPSIZAzZm7nHzIxzstOC9L3aKZF2X+KTztj5nYu6mvf6w+l2fjWz+2quz/7O2hUp6gq/y1C9eOD0REjFD8RPlwbgH0z29OATSW0NTOzFig7aawCZkjaP10J8ARgeQltzcysBUrtk0fEdkmLSG4QnABcFhFrJS1My5dI2htYDTwHeFLS6cCBEfGnem3LjN/MbLwrfSA3IlYAK2r2Lck8v59k6ClXWzMzK0/Zw1NmZjaKOWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5VbdWdpszMiu32Bmo5t7GmZmlpuThpmZ5eakYWZmufmchtkY5bXAbSS4p2FmZrk5aZiZWW4enjIbB3zZs7WKexpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eZLbs3GMd81bkWV3tOQNFvSXZLWSVpcp1ySvpiW3ybpVZmy9ZL6JP1S0upyIzczs1J7GpImABcDRwIbgFWSlkfEHZlqRwEz0schwJfTrwO6I+KBkkI2M7OMsoenDgbWRcQ9AJJ6gDlANmnMAS6PiABulbS7pBdExH0lx2o2rtTeNe7hKqtHyXtzSS8mHQ/Mjoj56fZJwCERsShT5wfAhRHxs3T7BuDDEbFa0r3Aw0AAX4mIpQ1eZwGwAKCjo2NWT09PU/H29/czZcqUptqWocrx9W3cCkDHJNi8rc3BDKHqMbYrvplTd8tdt8p/i1D9+KBaMXZ3d6+JiM56ZWX3NFRnX23WGqzOYRGxSdJewEpJd0bETTtUTpLJUoDOzs7o6upqKtje3l6abVuGKsc3L/3UesbM7VzUV+3rLaoeY7viWz+3K3fdKv8tQvXjg9ERI5R/InwDsG9mexqwKW+diBj4ugW4mmS4y8zMSlJ20lgFzJC0v6SdgROA5TV1lgMnp1dRHQpsjYj7JE2WtCuApMnAm4DbywzezGy8K7XPGxHbJS0CrgcmAJdFxFpJC9PyJcAK4GhgHfAYcEravAO4WtJA3N+KiOvKjN/MbLwrfaA0IlaQJIbsviWZ5wG8v067e4CDRjxAK8Q3h5mNL55GxMzMcqvuJSNWWV4Fzmz8ctKwlnEyMRv7nDTMrC6fr7J6nDTMbEhOIDbAJ8LNzCw3Jw0zM8vNScPMzHJz0jAzs9x8Itxy8eW0ZgZOGlbDV8mY2WA8PGVmZrm5p2FmTZueWWyrq72hWEnc0zAzs9zc0zCzQnxRxPjmnoaZmeXmpGFmZrk5aZiZWW4+p2FmLeF7fMYHJw1ryCc8rVlOIGOXh6fMzCw3Jw0zM8vNw1Oj1PTF13LGzO3MW3xt7u5/oyEDD0PZSMrz9+UhrNGj9KQhaTbwBWACcGlEXFhTrrT8aOAxYF5E/DxPW8s/luxEYVXl8yHVVmrSkDQBuBg4EtgArJK0PCLuyFQ7CpiRPg4BvgwckrPtuNQoATgxmFmrld3TOBhYFxH3AEjqAeYA2Tf+OcDlERHArZJ2l/QCYHqOti3Vt3Er89I33jyfeDz8Y9acVn3wafR/WvR/2RorO2lMBf4ns72BpDcxVJ2pOdsCIGkBsCDd7Jd0V5Px7gk8AKBPF2tYtH4zTsvEV1WOcfiqHh9UJ8ZB/u+a/l8uUSV+hqn9GhWUnTRUZ1/krJOnbbIzYimwtFhoO5K0OiI6h3uckVL1+MAxtkLV44Pqx1j1+GB0xAjlJ40NwL6Z7WnAppx1ds7R1szMRlDZ92msAmZI2l/SzsAJwPKaOsuBk5U4FNgaEfflbGtmZiOo1J5GRGyXtAi4nuSy2csiYq2khWn5EmAFyeW260guuT1lsLYjHPKwh7hGWNXjA8fYClWPD6ofY9Xjg9ERI0ouUjIzMxuapxExM7PcnDTMzCw3J406JM2WdJekdZIWtzueWpL2lfRjSb+WtFbSB9odUz2SJkj6haQftDuWetIbR78n6c70Z/madsdUS9IH09/x7ZK+LWmXNsdzmaQtkm7P7NtD0kpJv0m/PreCMX4m/T3fJulqSbu3McS6MWbKzpQUkvZsR2xDcdKokZmu5CjgQOBESQe2N6odbAfOiIi/BQ4F3l/BGAE+APy63UEM4gvAdRHxUuAgKharpKnAaUBnRLyM5AKQE9obFcuA2TX7FgM3RMQM4IZ0u52WsWOMK4GXRcTLgbuBj5QdVI1l7BgjkvYlmSrp92UHlJeTxo6emuokIp4ABqYrqYyIuG9gEseIeITkzW5qe6N6JknTgGOAS9sdSz2SngO8HvgqQEQ8ERF/bGtQ9U0EJkmaCDybNt+bFBE3AQ/V7J4DfD19/nXguDJjqlUvxoj4UURsTzdvJbnPq20a/BwB/gX4ZxrcuFwFTho7ajSNSSVJmg68EvjvNodS6/Mkf/xPtjmORl4E/AH4WjqEdqmkye0OKisiNgKfJfnUeR/JPUs/am9UdXWk91KRft2rzfEM5VTgh+0OopakY4GNEfGrdscyGCeNHeWerqTdJE0BrgROj4g/tTueAZLeDGyJiDXtjmUQE4FXAV+OiFcCj9L+YZVnSM8NzAH2B/YBJkt6Z3ujGt0knU0yvHtFu2PJkvRs4GzgnHbHMhQnjR3lmeqk7SQ9iyRhXBERV7U7nhqHAcdKWk8yvHeEpG+2N6QdbAA2RMRAD+17JEmkSt4I3BsRf4iIvwBXAa9tc0z1bE5noib9uqXN8dQl6V3Am4G5Ub0b1F5M8uHgV+n/zTTg55L2bmtUdThp7Kjy05WkC1V9Ffh1RHyu3fHUioiPRMS0iJhO8vO7MSIq9Qk5Iu4H/kfS36S73sAITrPfpN8Dh0p6dvo7fwMVO1mfWg68K33+LuD7bYylrnQBtw8Dx0bEY+2Op1ZE9EXEXhExPf2/2QC8Kv07rRQnjRrpybKB6Up+Dfx7CdOVFHUYcBLJJ/hfpo+j2x3UKPRPwBWSbgNeAfzf9obzTGkv6HvAz4E+kv/Xtk41IenbwC3A30jaIOndwIXAkZJ+Q3LlT1tX1GwQ478CuwIr0/+XJRWMcVTwNCJmZpabexpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpWKVIOlfSmLx5SNKp6ZoTT0j642D7m/051Gsn6ThJ/6fJmJelazuEpN6asnmZsgPqtO3KlL8x3ffRzL4NzcRk7eWkYVYCSfuQ3M19M3AEybxSDfeTTCnfzKJQ9dodBzSVNFL3p8d8X4PyR0hmKKh1clqW9bX0WCuGEY+10cR2B2A2TswgWUTp6xHxs6H2R8QGkvmHCmm23RAej4hbBym/CninpHMGJgKUNAl4K8mkmvMy8W0ENkr6Q4tjtJK4p2GjgpIleG+RtE3SVknXZCYbzNY7MV3W88+S+iQdK6m3dmilxbG9RNI3JN2bxnePpC8PLHsqaRkw8Po3pEMzyxrtT9s8Y5hpYFvSDEnXSuqX9DtJ50jaqbZeZnsZySSCUzPDQuslHZ8+P6jO99Mr6ZYCP4JvAPsBr8vsewtJMryywHFsFHBPwyovnaH0WuBG4O3AFOATwM8kvSL99IqkI0nWSVgOnAHsSbIY1C4kS3yOlH1IPt2fDjxMssDTWSRDMK8BzgfWAF8E3k8yAeHAJ+1G+xu5mmSI51+A/w2cR7Jo2Nca1D8feD7wauDYdN/jJBMgbgLeQ2bYKU3EhwOnDBFH1u+Am0iGqH6a7js5jbW/wHFsFHDSsNHgk8A9wFEDS3amn4TvJkkOA+P155FMb/6WzDBJH8kb84gljXTpzpsGtiXdDKwDfirplRHxC0kDU5rfkR3qabR/EBdFxECC+E9JRwAn0iBpRMRv06GgJ2qPL+nfgA9K+lBEPJrufg/wR+A7OWLJuhy4SNJpwHNJzs0cVfAYNgp4eMraQomJ2UeDepNJFkf6TmaNZyLiXuC/SD4VI2kC0AlcmV1gJ11L/d6aY54l6S5JT0o6rqbsxZJ+JuluJcvAdub4XnZOj3mnpG3AX3j6E/cOQ2jDdG3N9u3AC5s81lKSdcdPBJC0C8lQ1uURsa3gsb4L/C+S3s9ckpPnNzQZl1WYk4a1y+Ekb67ZRz3PJVmC9746ZfcDe6TP9wSeRf1V4zbXbN8AHE2md5CxBFgWEQeQrHF+haR6SwBnfQo4F/gmcAxwMPD3adkuQ7Qt6qGa7cebfY2I2ESyYNLCdNfbSH6eX2niWI8A15AMUZ1MsqJkVdeHt2Hw8JS1yxqScfahPEyyRnu9ZS/3Bh5Mnz9Aknj2qlOvg2QVPOCpxY2ozQWSng8cSpJQiIiVaZ1ZwOpBYjyB5NP5JzPHmjJI/Sq5hOQk/CySoamfRkSzKxheTtIT2om092Jjj3sa1hYR8UhErM4+GtR7lCTBvC0dggJA0n4k62X/JK33V5I39rdmewbpm+H+OcN6IbApXY97wO8Yevjn2ezYUypyInmkPQ5MqlcQETeSrFD5OZIVIYezot1K4N+BJRVc7dJaxD0NGw0+RvIJ9geSLiG5euo8YCtwUabex4EfAVdLWkoyZHUuyTBWs0MlQw1NAVwHvCs96b6OZGjqtU2+3ki4A9hD0ntJEuufI6IvU74E+AJJb63pS2TTxO0exhjnnoZVXkRcR3KuYHfST7Ikn45fl47LD9RbSXIS9m9JLvf8MMnVVfeTJJih/B7YR9KzMvv2IzO01cA/kVzmewHJVUe7Uq03z0uBHpI10P8f8B815d9Nvy6LiMfLDMxGH68RbmOapGkkn/4viIjza8p6gc9HxDWZfTcAPRHxb+l9H5cAB8QY/keR9I8kJ78PiIh1NWXLgC7gJUCkvYnhvJZIbvr7KvCGiJg2nONZ+dzTsDFD0qT0Tuy3Sjpc0ikk4+yPkXzaHqj30XSyvNcAl0raIGngRPtC4BRJdwOfAeaO1YQh6UBJAzcIXlObMDL2Izln04pLaM9Oj3VyC45lbeCeho0ZknYmGR46FHge8CjJ/RJnRcTt7YytitKe1mtJJkt8R3aoL1NnOsm5IYBHIuKuYb7mC4Cp6eYTEXHbcI5n5XPSMDOz3Dw8ZWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpbb/wcMNwymqdNzCAAAAABJRU5ErkJggg==\n",
"text/plain": [
"