{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "ecce356e-321b-441e-8a5d-a20bf72f8691",
"metadata": {},
"outputs": [],
"source": [
"import dask.dataframe as dd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "89cbcd82-4ca2-4aba-95b7-e58c0ceed770",
"metadata": {},
"outputs": [],
"source": [
"cols = ['Ligand SMILES', 'IC50 (nM)','KEGG ID of Ligand','Ki (nM)', 'Kd (nM)','EC50 (nM)']"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a870d8d7-374b-4474-b9ee-305bbf9f17a9",
"metadata": {},
"outputs": [],
"source": [
"import tqdm.notebook"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e9f76b32-e8f0-47ee-b592-a91a88f4f93e",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c988bc89781242ec8c8b7f8fd0b1c233",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/13 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for i in tqdm.notebook.tqdm(range(0,13)):\n",
" mycol = 'BindingDB Target Chain Sequence.{}'.format(i)\n",
" allseq = ['BindingDB Target Chain Sequence']+['BindingDB Target Chain Sequence.{}'.format(j) for j in range(1,13)]\n",
" dtypes = {'BindingDB Target Chain Sequence.{}'.format(i): 'object' for i in range(1,13)}\n",
" dtypes.update({'BindingDB Target Chain Sequence': 'object',\n",
" 'IC50 (nM)': 'object',\n",
" 'KEGG ID of Ligand': 'object',\n",
" 'Ki (nM)': 'object',\n",
" 'Kd (nM)': 'object',\n",
" 'EC50 (nM)': 'object',\n",
" 'koff (s-1)': 'object'})\n",
" ddf = dd.read_csv('bindingdb/data/BindingDB_All.tsv',sep='\\t',error_bad_lines=False,blocksize=16*1024*1024,\n",
" usecols=cols+allseq,\n",
" dtype=dtypes)\n",
" ddf = ddf.reset_index()\n",
" ddf = ddf.rename(columns={'BindingDB Target Chain Sequence.{}'.format(j): 'seq_{}'.format(j) for j in range(1,13)})\n",
" ddf = ddf.rename(columns={'BindingDB Target Chain Sequence': 'seq_0'})\n",
" ddf = ddf.drop(columns={'seq_{}'.format(j) for j in range(0,13) if i != j})\n",
" ddf[cols+['seq_{}'.format(i)]].to_parquet('bindingdb/parquet_data/target{}'.format(i),schema='infer')"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "be79bbcf-0622-4d1e-8f08-a723a4167d8b",
"metadata": {},
"outputs": [],
"source": [
"ddfs = []\n",
"for i in range(0,13):\n",
" ddf = dd.read_parquet('bindingdb/parquet_data/target{}'.format(i))\n",
" ddf = ddf.rename(columns={'seq_{}'.format(i): 'seq'})\n",
" ddfs.append(ddf)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "35ca09cb-6264-4526-b504-0d29236a03c1",
"metadata": {},
"outputs": [],
"source": [
"ddf = dd.concat(ddfs)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "ba518a9a-0d15-47be-977b-e2dfe2511529",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Ligand SMILES | \n",
" IC50 (nM) | \n",
" KEGG ID of Ligand | \n",
" Ki (nM) | \n",
" Kd (nM) | \n",
" EC50 (nM) | \n",
" seq | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 | \n",
" None | \n",
" None | \n",
" 0.24 | \n",
" None | \n",
" None | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
"
\n",
" \n",
" 1 | \n",
" O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... | \n",
" None | \n",
" None | \n",
" 0.25 | \n",
" None | \n",
" None | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
"
\n",
" \n",
" 2 | \n",
" O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... | \n",
" None | \n",
" None | \n",
" 0.41 | \n",
" None | \n",
" None | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
"
\n",
" \n",
" 3 | \n",
" OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... | \n",
" None | \n",
" None | \n",
" 0.8 | \n",
" None | \n",
" None | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
"
\n",
" \n",
" 4 | \n",
" OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... | \n",
" None | \n",
" None | \n",
" 0.99 | \n",
" None | \n",
" None | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Ligand SMILES IC50 (nM) \\\n",
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n",
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n",
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n",
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n",
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n",
"\n",
" KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n",
"0 None 0.24 None None \n",
"1 None 0.25 None None \n",
"2 None 0.41 None None \n",
"3 None 0.8 None None \n",
"4 None 0.99 None None \n",
"\n",
" seq \n",
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... "
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ddf.head()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "f504d7aa-dfc1-4346-a136-8814c4b5d979",
"metadata": {},
"outputs": [],
"source": [
"ddf.repartition(partition_size='25MB').to_parquet('bindingdb/parquet_data/all_targets',schema='infer')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d7eafa69-4606-4b34-ae8f-8c6462dcb004",
"metadata": {},
"outputs": [],
"source": [
"ddf = dd.read_parquet('../binding_affinity/bindingdb/parquet_data/all_targets')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b151868a-0cd6-405e-8401-f79918fb0b07",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"Dask DataFrame Structure:
\n",
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Ligand SMILES | \n",
" IC50 (nM) | \n",
" KEGG ID of Ligand | \n",
" Ki (nM) | \n",
" Kd (nM) | \n",
" EC50 (nM) | \n",
" seq | \n",
"
\n",
" \n",
" npartitions=483 | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | \n",
" object | \n",
" object | \n",
" object | \n",
" object | \n",
" object | \n",
" object | \n",
" object | \n",
"
\n",
" \n",
" | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
"
\n",
"
\n",
"Dask Name: read-parquet, 483 tasks
"
],
"text/plain": [
"Dask DataFrame Structure:\n",
" Ligand SMILES IC50 (nM) KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) seq\n",
"npartitions=483 \n",
" object object object object object object object\n",
" ... ... ... ... ... ... ...\n",
"... ... ... ... ... ... ... ...\n",
" ... ... ... ... ... ... ...\n",
" ... ... ... ... ... ... ...\n",
"Dask Name: read-parquet, 483 tasks"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ddf"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "c00102b8-f4be-4ebd-8d30-7a2c7fc2d05e",
"metadata": {},
"outputs": [],
"source": [
"ddf_nonnull = ddf[~ddf.seq.isnull()].copy()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "c5337e06-1e45-4180-90ed-49ac9ecdd24a",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Ligand SMILES | \n",
" IC50 (nM) | \n",
" KEGG ID of Ligand | \n",
" Ki (nM) | \n",
" Kd (nM) | \n",
" EC50 (nM) | \n",
" seq | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 | \n",
" None | \n",
" None | \n",
" 0.24 | \n",
" None | \n",
" None | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
"
\n",
" \n",
" 1 | \n",
" O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... | \n",
" None | \n",
" None | \n",
" 0.25 | \n",
" None | \n",
" None | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
"
\n",
" \n",
" 2 | \n",
" O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... | \n",
" None | \n",
" None | \n",
" 0.41 | \n",
" None | \n",
" None | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
"
\n",
" \n",
" 3 | \n",
" OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... | \n",
" None | \n",
" None | \n",
" 0.8 | \n",
" None | \n",
" None | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
"
\n",
" \n",
" 4 | \n",
" OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... | \n",
" None | \n",
" None | \n",
" 0.99 | \n",
" None | \n",
" None | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Ligand SMILES IC50 (nM) \\\n",
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n",
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n",
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n",
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n",
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n",
"\n",
" KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n",
"0 None 0.24 None None \n",
"1 None 0.25 None None \n",
"2 None 0.41 None None \n",
"3 None 0.8 None None \n",
"4 None 0.99 None None \n",
"\n",
" seq \n",
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ddf_nonnull.head()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "7b423365-4989-4325-a5a5-845d852d52e9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2512985"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(ddf_nonnull)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "872edb84-3459-43d9-8e0e-e2a6b5d281eb",
"metadata": {},
"outputs": [],
"source": [
"from pint import UnitRegistry\n",
"import numpy as np\n",
"import re\n",
"ureg = UnitRegistry()\n",
"\n",
"def to_uM(affinities):\n",
" ic50, Ki, Kd, ec50 = affinities\n",
"\n",
" vals = []\n",
" \n",
" try:\n",
" ic50 = ureg(str(ic50)+'nM').m_as(ureg.uM)\n",
" vals.append(ic50)\n",
" except:\n",
" pass\n",
"\n",
" try:\n",
" Ki = ureg(str(Ki)+'nM').m_as(ureg.uM)\n",
" vals.append(Ki)\n",
" except:\n",
" pass\n",
"\n",
" try:\n",
" Kd = ureg(str(Kd)+'nM').m_as(ureg.uM)\n",
" vals.append(Kd)\n",
" except:\n",
" pass\n",
"\n",
" try:\n",
" ec50 = ureg(str(ec50)+'nM').m_as(ureg.uM)\n",
" vals.append(ec50)\n",
" except:\n",
" pass\n",
"\n",
" if len(vals) > 0:\n",
" vals = np.array(vals)\n",
" return np.mean(vals[~np.isnan(vals)])\n",
" \n",
" return None"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "b3cff13c-19b2-4413-a84b-d99062f516a7",
"metadata": {},
"outputs": [],
"source": [
"df_nonnull = ddf_nonnull.compute()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "ca9795de-e821-4dc3-a7bf-70ade9e4c7f0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO: Pandarallel will run on 32 workers.\n",
"INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n"
]
}
],
"source": [
"from pandarallel import pandarallel\n",
"pandarallel.initialize()\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "4356a3e2-fede-48e7-a486-343661fe0a0a",
"metadata": {},
"outputs": [],
"source": [
"df_affinity = df_nonnull.copy()\n",
"df_affinity['affinity_uM'] = df_affinity[['IC50 (nM)', 'Ki (nM)', 'Kd (nM)','EC50 (nM)']].parallel_apply(to_uM,axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "e91c3af8-84a5-42a2-9e25-49cb2f320b0b",
"metadata": {},
"outputs": [],
"source": [
"df_affinity[~df_affinity['affinity_uM'].isnull()].to_parquet('data/bindingdb.parquet')"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "f602fdbe-7083-436c-9eac-9d97fbc8be67",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2512985"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(df_affinity)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "27194288-cf3e-4c30-ad55-3b0998fdf939",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Ligand SMILES | \n",
" IC50 (nM) | \n",
" KEGG ID of Ligand | \n",
" Ki (nM) | \n",
" Kd (nM) | \n",
" EC50 (nM) | \n",
" seq | \n",
" affinity_uM | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 | \n",
" None | \n",
" None | \n",
" 0.24 | \n",
" None | \n",
" None | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
" 0.00024 | \n",
"
\n",
" \n",
" 1 | \n",
" O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... | \n",
" None | \n",
" None | \n",
" 0.25 | \n",
" None | \n",
" None | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
" 0.00025 | \n",
"
\n",
" \n",
" 2 | \n",
" O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... | \n",
" None | \n",
" None | \n",
" 0.41 | \n",
" None | \n",
" None | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
" 0.00041 | \n",
"
\n",
" \n",
" 3 | \n",
" OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... | \n",
" None | \n",
" None | \n",
" 0.8 | \n",
" None | \n",
" None | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
" 0.00080 | \n",
"
\n",
" \n",
" 4 | \n",
" OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... | \n",
" None | \n",
" None | \n",
" 0.99 | \n",
" None | \n",
" None | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
" 0.00099 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Ligand SMILES IC50 (nM) \\\n",
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n",
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n",
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n",
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n",
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n",
"\n",
" KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n",
"0 None 0.24 None None \n",
"1 None 0.25 None None \n",
"2 None 0.41 None None \n",
"3 None 0.8 None None \n",
"4 None 0.99 None None \n",
"\n",
" seq affinity_uM \n",
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00024 \n",
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00025 \n",
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00041 \n",
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00080 \n",
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00099 "
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_affinity.head()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "603fd298-0aa6-4097-b298-c55db013548c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2512985"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(df_affinity)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "d95ad9a9-d4ca-4679-8a33-235fe6e7047f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2510716"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(df_affinity[~df_affinity['affinity_uM'].isnull()])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "372a8c60-e63c-4d6a-a144-3ab5f4d93d22",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}