{ "cells": [ { "cell_type": "code", "execution_count": 2, "id": "ecce356e-321b-441e-8a5d-a20bf72f8691", "metadata": {}, "outputs": [], "source": [ "import dask.dataframe as dd" ] }, { "cell_type": "code", "execution_count": 2, "id": "89cbcd82-4ca2-4aba-95b7-e58c0ceed770", "metadata": {}, "outputs": [], "source": [ "cols = ['Ligand SMILES', 'IC50 (nM)','KEGG ID of Ligand','Ki (nM)', 'Kd (nM)','EC50 (nM)']" ] }, { "cell_type": "code", "execution_count": 3, "id": "a870d8d7-374b-4474-b9ee-305bbf9f17a9", "metadata": {}, "outputs": [], "source": [ "import tqdm.notebook" ] }, { "cell_type": "code", "execution_count": 5, "id": "e9f76b32-e8f0-47ee-b592-a91a88f4f93e", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c988bc89781242ec8c8b7f8fd0b1c233", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/13 [00:00\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Ligand SMILESIC50 (nM)KEGG ID of LigandKi (nM)Kd (nM)EC50 (nM)seq
0COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1NoneNone0.24NoneNonePQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...
1O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...NoneNone0.25NoneNonePQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...
2O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...NoneNone0.41NoneNonePQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...
3OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...NoneNone0.8NoneNonePQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...
4OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...NoneNone0.99NoneNonePQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...
\n", "" ], "text/plain": [ " Ligand SMILES IC50 (nM) \\\n", "0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n", "1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n", "2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n", "3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n", "4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n", "\n", " KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n", "0 None 0.24 None None \n", "1 None 0.25 None None \n", "2 None 0.41 None None \n", "3 None 0.8 None None \n", "4 None 0.99 None None \n", "\n", " seq \n", "0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n", "1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n", "2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n", "3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n", "4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... " ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ddf.head()" ] }, { "cell_type": "code", "execution_count": 9, "id": "f504d7aa-dfc1-4346-a136-8814c4b5d979", "metadata": {}, "outputs": [], "source": [ "ddf.repartition(partition_size='25MB').to_parquet('bindingdb/parquet_data/all_targets',schema='infer')" ] }, { "cell_type": "code", "execution_count": 4, "id": "d7eafa69-4606-4b34-ae8f-8c6462dcb004", "metadata": {}, "outputs": [], "source": [ "ddf = dd.read_parquet('../binding_affinity/bindingdb/parquet_data/all_targets')" ] }, { "cell_type": "code", "execution_count": 5, "id": "b151868a-0cd6-405e-8401-f79918fb0b07", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Dask DataFrame Structure:
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Ligand SMILESIC50 (nM)KEGG ID of LigandKi (nM)Kd (nM)EC50 (nM)seq
npartitions=483
objectobjectobjectobjectobjectobjectobject
.....................
........................
.....................
.....................
\n", "
\n", "
Dask Name: read-parquet, 483 tasks
" ], "text/plain": [ "Dask DataFrame Structure:\n", " Ligand SMILES IC50 (nM) KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) seq\n", "npartitions=483 \n", " object object object object object object object\n", " ... ... ... ... ... ... ...\n", "... ... ... ... ... ... ... ...\n", " ... ... ... ... ... ... ...\n", " ... ... ... ... ... ... ...\n", "Dask Name: read-parquet, 483 tasks" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ddf" ] }, { "cell_type": "code", "execution_count": 6, "id": "c00102b8-f4be-4ebd-8d30-7a2c7fc2d05e", "metadata": {}, "outputs": [], "source": [ "ddf_nonnull = ddf[~ddf.seq.isnull()].copy()" ] }, { "cell_type": "code", "execution_count": 8, "id": "c5337e06-1e45-4180-90ed-49ac9ecdd24a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Ligand SMILESIC50 (nM)KEGG ID of LigandKi (nM)Kd (nM)EC50 (nM)seq
0COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1NoneNone0.24NoneNonePQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...
1O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...NoneNone0.25NoneNonePQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...
2O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...NoneNone0.41NoneNonePQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...
3OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...NoneNone0.8NoneNonePQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...
4OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...NoneNone0.99NoneNonePQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...
\n", "
" ], "text/plain": [ " Ligand SMILES IC50 (nM) \\\n", "0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n", "1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n", "2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n", "3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n", "4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n", "\n", " KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n", "0 None 0.24 None None \n", "1 None 0.25 None None \n", "2 None 0.41 None None \n", "3 None 0.8 None None \n", "4 None 0.99 None None \n", "\n", " seq \n", "0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n", "1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n", "2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n", "3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n", "4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ddf_nonnull.head()" ] }, { "cell_type": "code", "execution_count": 17, "id": "7b423365-4989-4325-a5a5-845d852d52e9", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2512985" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(ddf_nonnull)" ] }, { "cell_type": "code", "execution_count": 11, "id": "872edb84-3459-43d9-8e0e-e2a6b5d281eb", "metadata": {}, "outputs": [], "source": [ "from pint import UnitRegistry\n", "import numpy as np\n", "import re\n", "ureg = UnitRegistry()\n", "\n", "def to_uM(affinities):\n", " ic50, Ki, Kd, ec50 = affinities\n", "\n", " vals = []\n", " \n", " try:\n", " ic50 = ureg(str(ic50)+'nM').m_as(ureg.uM)\n", " vals.append(ic50)\n", " except:\n", " pass\n", "\n", " try:\n", " Ki = ureg(str(Ki)+'nM').m_as(ureg.uM)\n", " vals.append(Ki)\n", " except:\n", " pass\n", "\n", " try:\n", " Kd = ureg(str(Kd)+'nM').m_as(ureg.uM)\n", " vals.append(Kd)\n", " except:\n", " pass\n", "\n", " try:\n", " ec50 = ureg(str(ec50)+'nM').m_as(ureg.uM)\n", " vals.append(ec50)\n", " except:\n", " pass\n", "\n", " if len(vals) > 0:\n", " vals = np.array(vals)\n", " return np.mean(vals[~np.isnan(vals)])\n", " \n", " return None" ] }, { "cell_type": "code", "execution_count": 12, "id": "b3cff13c-19b2-4413-a84b-d99062f516a7", "metadata": {}, "outputs": [], "source": [ "df_nonnull = ddf_nonnull.compute()" ] }, { "cell_type": "code", "execution_count": 13, "id": "ca9795de-e821-4dc3-a7bf-70ade9e4c7f0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO: Pandarallel will run on 32 workers.\n", "INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n" ] } ], "source": [ "from pandarallel import pandarallel\n", "pandarallel.initialize()\n" ] }, { "cell_type": "code", "execution_count": 14, "id": "4356a3e2-fede-48e7-a486-343661fe0a0a", "metadata": {}, "outputs": [], "source": [ "df_affinity = df_nonnull.copy()\n", "df_affinity['affinity_uM'] = df_affinity[['IC50 (nM)', 'Ki (nM)', 'Kd (nM)','EC50 (nM)']].parallel_apply(to_uM,axis=1)" ] }, { "cell_type": "code", "execution_count": 15, "id": "e91c3af8-84a5-42a2-9e25-49cb2f320b0b", "metadata": {}, "outputs": [], "source": [ "df_affinity[~df_affinity['affinity_uM'].isnull()].to_parquet('data/bindingdb.parquet')" ] }, { "cell_type": "code", "execution_count": 16, "id": "f602fdbe-7083-436c-9eac-9d97fbc8be67", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2512985" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(df_affinity)" ] }, { "cell_type": "code", "execution_count": 18, "id": "27194288-cf3e-4c30-ad55-3b0998fdf939", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Ligand SMILESIC50 (nM)KEGG ID of LigandKi (nM)Kd (nM)EC50 (nM)seqaffinity_uM
0COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1NoneNone0.24NoneNonePQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...0.00024
1O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn...NoneNone0.25NoneNonePQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...0.00025
2O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=...NoneNone0.41NoneNonePQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...0.00041
3OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@...NoneNone0.8NoneNonePQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...0.00080
4OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H...NoneNone0.99NoneNonePQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM...0.00099
\n", "
" ], "text/plain": [ " Ligand SMILES IC50 (nM) \\\n", "0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 None \n", "1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... None \n", "2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... None \n", "3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... None \n", "4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... None \n", "\n", " KEGG ID of Ligand Ki (nM) Kd (nM) EC50 (nM) \\\n", "0 None 0.24 None None \n", "1 None 0.25 None None \n", "2 None 0.41 None None \n", "3 None 0.8 None None \n", "4 None 0.99 None None \n", "\n", " seq affinity_uM \n", "0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00024 \n", "1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00025 \n", "2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00041 \n", "3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00080 \n", "4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... 0.00099 " ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_affinity.head()" ] }, { "cell_type": "code", "execution_count": 19, "id": "603fd298-0aa6-4097-b298-c55db013548c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2512985" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(df_affinity)" ] }, { "cell_type": "code", "execution_count": 20, "id": "d95ad9a9-d4ca-4679-8a33-235fe6e7047f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2510716" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(df_affinity[~df_affinity['affinity_uM'].isnull()])" ] }, { "cell_type": "code", "execution_count": null, "id": "372a8c60-e63c-4d6a-a144-3ab5f4d93d22", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.4" } }, "nbformat": 4, "nbformat_minor": 5 }