{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "c975c670-97cc-453e-bba6-3639cf8d5e89", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/jue@together.xyz/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] } ], "source": [ "import json\n", "from datasets import load_dataset" ] }, { "cell_type": "code", "execution_count": 2, "id": "e818dca8-bd10-4b89-9fcd-5cd9252b4e07", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Found cached dataset hellaswag (/home/jue@together.xyz/.cache/huggingface/datasets/hellaswag/default/0.1.0/512a66dd8b1b1643ab4a48aa4f150d04c91680da6a4096498a5e5f799623d5ae)\n", "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 53.00it/s]\n" ] } ], "source": [ "task_name = 'hellaswag'\n", "data = load_dataset(task_name)\n", "data.shuffle(seed=42)\n", "with open(f'../seed_data{task_name}.jsonl', 'w') as f:\n", " for i_item, item in enumerate(data['train']):\n", " text = item['ctx'] + item['endings'][int(item['label'])]\n", " f.write(\n", " json.dumps({'text': text, 'source': task_name}) + '\\n'\n", " )" ] }, { "cell_type": "code", "execution_count": 3, "id": "c42aae00-be85-4b64-9325-f6a6139c6ee6", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Downloading builder script: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3.38k/3.38k [00:00<00:00, 32.1MB/s]\n", "Downloading metadata: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1.91k/1.91k [00:00<00:00, 20.0MB/s]\n", "Downloading readme: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6.60k/6.60k [00:00<00:00, 45.1MB/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading and preparing dataset boolq/default to /home/jue@together.xyz/.cache/huggingface/datasets/boolq/default/0.1.0/bf0dd57da941c50de94ae3ce3cef7fea48c08f337a4b7aac484e9dddc5aa24e5...\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Downloading data files: 0%| | 0/2 [00:00<?, ?it/s]\n", "Downloading data: 0%| | 0.00/6.53M [00:00<?, ?B/s]\u001b[A\n", "Downloading data: 0%|▍ | 17.4k/6.53M [00:00<00:43, 150kB/s]\u001b[A\n", "Downloading data: 1%|█▏ | 54.3k/6.53M [00:00<00:26, 246kB/s]\u001b[A\n", "Downloading data: 2%|██▎ | 104k/6.53M [00:00<00:18, 346kB/s]\u001b[A\n", "Downloading data: 3%|████▍ | 197k/6.53M [00:00<00:11, 554kB/s]\u001b[A\n", "Downloading data: 5%|███████▋ | 343k/6.53M [00:00<00:07, 865kB/s]\u001b[A\n", "Downloading data: 10%|█████████████▊ | 623k/6.53M [00:00<00:03, 1.50MB/s]\u001b[A\n", "Downloading data: 17%|████████████████████████▋ | 1.12M/6.53M [00:00<00:02, 2.58MB/s]\u001b[A\n", "Downloading data: 31%|█████████████████████████████████████████████▏ | 2.05M/6.53M [00:00<00:00, 4.67MB/s]\u001b[A\n", "Downloading data: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6.53M/6.53M [00:01<00:00, 6.28MB/s]\u001b[A\n", "Downloading data files: 50%|████████████████████████████████████████████████████████████████████████▌ | 1/2 [00:01<00:01, 1.95s/it]\n", "Downloading data: 0%| | 0.00/2.24M [00:00<?, ?B/s]\u001b[A\n", "Downloading data: 1%|█▏ | 17.4k/2.24M [00:00<00:14, 150kB/s]\u001b[A\n", "Downloading data: 2%|███▌ | 54.3k/2.24M [00:00<00:08, 246kB/s]\u001b[A\n", "Downloading data: 5%|██████▊ | 104k/2.24M [00:00<00:06, 347kB/s]\u001b[A\n", "Downloading data: 9%|████████████▋ | 195k/2.24M [00:00<00:03, 549kB/s]\u001b[A\n", "Downloading data: 15%|██████████████████████▏ | 341k/2.24M [00:00<00:02, 863kB/s]\u001b[A\n", "Downloading data: 28%|███████████████████████████████████████▉ | 617k/2.24M [00:00<00:01, 1.49MB/s]\u001b[A\n", "Downloading data: 49%|██████████████████████████████████████████████████████████████████████▏ | 1.09M/2.24M [00:00<00:00, 2.53MB/s]\u001b[A\n", "Downloading data: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.24M/2.24M [00:00<00:00, 2.61MB/s]\u001b[A\n", "Downloading data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:03<00:00, 1.85s/it]\n", " \r" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Dataset boolq downloaded and prepared to /home/jue@together.xyz/.cache/huggingface/datasets/boolq/default/0.1.0/bf0dd57da941c50de94ae3ce3cef7fea48c08f337a4b7aac484e9dddc5aa24e5. Subsequent calls will reuse this data.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 139.08it/s]\n" ] } ], "source": [ "task_name = 'boolq'\n", "data = load_dataset(task_name)\n", "data.shuffle(seed=42)\n", "with open(f'../seed_data{task_name}.jsonl', 'w') as f:\n", " for i_item, item in enumerate(data['train']):\n", " text = f\"{item['passage']}\\nQuestion: {item['question']}?\\nAnswer: {item['answer']}\"\n", " f.write(\n", " json.dumps({'text': text, 'source': task_name}) + '\\n'\n", " )" ] }, { "cell_type": "code", "execution_count": 4, "id": "878216f4-74e4-46ba-bfcd-c95348c10415", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Found cached dataset ai2_arc (/home/jue@together.xyz/.cache/huggingface/datasets/ai2_arc/ARC-Challenge/1.0.0/1569c2591ea2683779581d9fb467203d9aa95543bb9b75dcfde5da92529fd7f6)\n", "100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 624.09it/s]\n" ] } ], "source": [ "task_name = 'arc_challenge'\n", "data = load_dataset('ai2_arc', 'ARC-Challenge')\n", "data.shuffle(seed=42)\n", "with open(f'../seed_data{task_name}.jsonl', 'w') as f:\n", " for i_item, item in enumerate(data['train']):\n", " i_a = item['choices']['label'].index(item['answerKey'])\n", " q = item['question']\n", " a = item['choices']['text'][i_a]\n", " text = \"Question: \" + q + \"\\nAnswer:\" + a\n", " f.write(\n", " json.dumps({'text': text, 'source': task_name}) + '\\n'\n", " )" ] }, { "cell_type": "code", "execution_count": 5, "id": "7cb51285-d5ce-4ae2-bd7f-ac15e87c4fb7", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Found cached dataset ai2_arc (/home/jue@together.xyz/.cache/huggingface/datasets/ai2_arc/ARC-Easy/1.0.0/1569c2591ea2683779581d9fb467203d9aa95543bb9b75dcfde5da92529fd7f6)\n", "100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 426.87it/s]\n" ] } ], "source": [ "task_name = 'arc_easy'\n", "data = load_dataset('ai2_arc', 'ARC-Easy')\n", "data.shuffle(seed=42)\n", "with open(f'../seed_data{task_name}.jsonl', 'w') as f:\n", " for i_item, item in enumerate(data['train']):\n", " i_a = item['choices']['label'].index(item['answerKey'])\n", " q = item['question']\n", " a = item['choices']['text'][i_a]\n", " text = \"Question: \" + q + \"\\nAnswer:\" + a\n", " f.write(\n", " json.dumps({'text': text, 'source': task_name}) + '\\n'\n", " )" ] }, { "cell_type": "code", "execution_count": 6, "id": "9347c339-4559-4111-bf44-ce2b624edc9e", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Found cached dataset super_glue (/home/jue@together.xyz/.cache/huggingface/datasets/super_glue/copa/1.0.3/bb9675f958ebfee0d5d6dc5476fafe38c79123727a7258d515c450873dbdbbed)\n", "100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1055.52it/s]\n", "Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/super_glue/copa/1.0.3/bb9675f958ebfee0d5d6dc5476fafe38c79123727a7258d515c450873dbdbbed/cache-06e156489a3d17ef.arrow\n", "Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/super_glue/copa/1.0.3/bb9675f958ebfee0d5d6dc5476fafe38c79123727a7258d515c450873dbdbbed/cache-f4bd523109c343ed.arrow\n", "Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/super_glue/copa/1.0.3/bb9675f958ebfee0d5d6dc5476fafe38c79123727a7258d515c450873dbdbbed/cache-b8d0981688b46f46.arrow\n" ] } ], "source": [ "task_name = 'copa'\n", "data = load_dataset('super_glue', task_name)\n", "data.shuffle(seed=42)\n", "with open(f'../seed_data{task_name}.jsonl', 'w') as f:\n", " for i_item, item in enumerate(data['train']):\n", " i_a = item['label']\n", " premise = item['premise']\n", " question = item['question']\n", " choice = item['choice1'] if i_a == 0 else item['choice2']\n", " choice = choice[0].lower() + choice[1:]\n", "\n", " connector = {\n", " \"cause\": \"because\",\n", " \"effect\": \"therefore\",\n", " }[question]\n", "\n", " text = premise.strip()[:-1] + f\" {connector}\" + ' ' + choice\n", " f.write(\n", " json.dumps({'text': text, 'source': task_name}) + '\\n'\n", " )" ] }, { "cell_type": "code", "execution_count": 7, "id": "dc24ba3b-aa6a-4665-87aa-08471a87de9b", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Found cached dataset piqa (/home/jue@together.xyz/.cache/huggingface/datasets/piqa/plain_text/1.1.0/6c611c1a9bf220943c4174e117d3b660859665baf1d43156230116185312d011)\n", "100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 910.95it/s]\n", "Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/piqa/plain_text/1.1.0/6c611c1a9bf220943c4174e117d3b660859665baf1d43156230116185312d011/cache-64434cd628e6e9e0.arrow\n", "Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/piqa/plain_text/1.1.0/6c611c1a9bf220943c4174e117d3b660859665baf1d43156230116185312d011/cache-97a6e3c466ced62d.arrow\n", "Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/piqa/plain_text/1.1.0/6c611c1a9bf220943c4174e117d3b660859665baf1d43156230116185312d011/cache-6b1e5924150382c7.arrow\n" ] } ], "source": [ "task_name = 'piqa'\n", "data = load_dataset(task_name)\n", "data.shuffle(seed=42)\n", "with open(f'../seed_data{task_name}.jsonl', 'w') as f:\n", " for i_item, item in enumerate(data['train']):\n", " i_a = item['label']\n", " goal = item['goal']\n", " sol = item['sol1'] if i_a == 0 else item['sol2']\n", "\n", " text = \"Question: \" + goal + \"\\nAnswer: \" + sol\n", " f.write(\n", " json.dumps({'text': text, 'source': task_name}) + '\\n'\n", " )" ] }, { "cell_type": "code", "execution_count": 8, "id": "501744bd-0260-4a3c-89dc-df264ff3306e", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Found cached dataset winogrande (/home/jue@together.xyz/.cache/huggingface/datasets/winogrande/winogrande_xl/1.1.0/a826c3d3506aefe0e9e9390dcb53271070536586bab95849876b2c1743df56e2)\n", "100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1014.75it/s]\n", "Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/winogrande/winogrande_xl/1.1.0/a826c3d3506aefe0e9e9390dcb53271070536586bab95849876b2c1743df56e2/cache-ebcf1ebbadaf243c.arrow\n", "Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/winogrande/winogrande_xl/1.1.0/a826c3d3506aefe0e9e9390dcb53271070536586bab95849876b2c1743df56e2/cache-ea79c2b85e9d846f.arrow\n", "Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/winogrande/winogrande_xl/1.1.0/a826c3d3506aefe0e9e9390dcb53271070536586bab95849876b2c1743df56e2/cache-5aca6c830a1dfa33.arrow\n" ] } ], "source": [ "task_name = 'winogrande'\n", "data = load_dataset(task_name, 'winogrande_xl')\n", "data.shuffle(seed=42)\n", "with open(f'../seed_data{task_name}.jsonl', 'w') as f:\n", " for i_item, item in enumerate(data['train']):\n", " i_a = item['answer']\n", " sentence = item['sentence']\n", " option = item['option1'] if i_a == 1 else item['option2']\n", " \n", " text = sentence.replace('_', option)\n", " f.write(\n", " json.dumps({'text': text, 'source': task_name}) + '\\n'\n", " )" ] }, { "cell_type": "code", "execution_count": 9, "id": "65d4b641-2b78-476f-89ac-6ecb48e7d044", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Found cached dataset json (/home/jue@together.xyz/.cache/huggingface/datasets/juewang___json/juewang--target-data-72e09ed206c54e99/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96)\n" ] } ], "source": [ "dataset = load_dataset(\"juewang/target-data\", data_files='seed_data/*.jsonl', split='train')" ] }, { "cell_type": "code", "execution_count": null, "id": "a0554b4f-c5c0-4621-8b91-3daf05e6fbdf", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "nebula-fav2", "language": "python", "name": "nebula-fav2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11" } }, "nbformat": 4, "nbformat_minor": 5 }