import datasets from sentence_transformers import SentenceTransformer, util import torch from huggingface_hub import create_repo from huggingface_hub.utils._errors import HfHubHTTPError """ To create a reranking dataset from the initial retrieval dataset, we use a model (sentence-transformers/all-MiniLM-L6-v2) to embed the queries and the documents. We then compute the cosine similarity for each query and document. For each query we get the topk articles, as we would for a retrieval task. Each couple query-document is labeled as relevant if it was labeled like so in the retrieval dataset, or irrelevant if it was not """ # Download the documents (corpus) corpus_raw = datasets.load_dataset("lyon-nlp/alloprof", "documents") # Download the queries queries_raw = datasets.load_dataset("lyon-nlp/alloprof", "queries") # Get the model model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') # Generate document text (title + content) corpus = corpus_raw.map(lambda x: {"text": x["title"] + "\n\n" + x["text"]}) # Embed documents and queries corpus = corpus.map(lambda x: {"embeddings": model.encode(x['text'])}, batched=True) queries = queries_raw.map(lambda x: {"embeddings": model.encode(x["text"])}, batched=True) # change document uuid with integer id doc_name_id_mapping = {doc["uuid"]: i for i, doc in enumerate(corpus["documents"])} corpus = corpus.map(lambda x: {"uuid" : doc_name_id_mapping[x["uuid"]]}) queries = queries.map(lambda x: {"relevant": [doc_name_id_mapping[r] for r in x["relevant"]]}) # Retrieve best documents by cosine similarity def retrieve_documents(queries_embs, documents_embs, topk:int=10) -> torch.return_types.topk: """Finds the topk documents for each embed query among all the embed documents Args: queries_embs (_type_): the embedings of all queries of the dataset (dataset["queries"]["embeddings"]) documents_embs (_type_): the embedings of all coprus of the dataset (dataset["corpus"]["embeddings"]) topk (int, optional): The amount of top documents to retrieve. Defaults to 5. Returns: torch.return_types.topk : The topk object, with topk.values being the cosine similarities and the topk.indices being the indices of best documents for each queries """ similarities = util.cos_sim(queries_embs, documents_embs) tops = torch.topk(similarities, k=topk, axis=1) return tops top_docs_train = retrieve_documents(queries["train"]["embeddings"], corpus["documents"]["embeddings"]) top_docs_test = retrieve_documents(queries["test"]["embeddings"], corpus["documents"]["embeddings"]) queries["train"] = queries["train"].map( lambda _, i: {"top_cosim_values": top_docs_train.values[i], "top_cosim_indexes": top_docs_train.indices[i]}, with_indices=True ) queries["test"] = queries["test"].map( lambda _, i: {"top_cosim_values": top_docs_test.values[i], "top_cosim_indexes": top_docs_test.indices[i]}, with_indices=True ) # Remove id in best_indices if it corresponds to ground truth a relevant document queries = queries.map(lambda x : {"top_cosim_indexes": [i for i in x["top_cosim_indexes"] if i not in x["relevant"]]}) # Convert document ids to document texts based on the corpus queries = queries.map(lambda x: {"negative": [corpus["documents"][i]["text"] for i in x["top_cosim_indexes"]]}) queries = queries.map(lambda x: {"positive": [corpus["documents"][i]["text"] for i in x["relevant"]]}) # Format as the MTEB format queries = queries.rename_column("text", "query") dataset = queries.remove_columns(['embeddings', 'relevant', 'top_cosim_values', 'top_cosim_indexes', 'answer', 'subject', "id"]) # Rename the key of dataset key as "test" # dataset["test"] = dataset.pop("queries") # create HF repo repo_id = "lyon-nlp/mteb-fr-reranking-alloprof-s2p" try: create_repo(repo_id, repo_type="dataset") except HfHubHTTPError as e: print("HF repo already exist") # save dataset as json dataset.push_to_hub(repo_id)