import json from typing import List import datasets from datasets import ClassLabel, Value, load_dataset _URLS = { } _SUB_CLASSES = [ "anger", "fear", "joy", "love", "sadness", "surprise", "neutral", ] _CLASS_NAMES = [ "no emotion", "happiness", "admiration", "amusement", "anger", "annoyance", "approval", "caring", "confusion", "curiosity", "desire", "disappointment", "disapproval", "disgust", "embarrassment", "excitement", "fear", "gratitude", "grief", "joy", "love", "nervousness", "optimism", "pride", "realization", "relief", "remorse", "sadness", "surprise", "neutral", ] class EmotionsDatasetConfig(datasets.BuilderConfig): def __init__(self, features, label_classes, **kwargs): super().__init__(**kwargs) self.features = features self.label_classes = label_classes class EmotionsDataset(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ EmotionsDatasetConfig( name="raw", label_classes=_SUB_CLASSES, features=["text", "label", "dataset", "license", "language"] ), EmotionsDatasetConfig( name="split", label_classes=_SUB_CLASSES, features=["text", "label", "dataset", "license", "language"] ) ] DEFAULT_CONFIG_NAME = "all" def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "id": datasets.Value("string"), 'text': Value(dtype='string', id=None), 'label': ClassLabel(names=_SUB_CLASSES, id=None), 'dataset': Value(dtype='string', id=None), 'license': Value(dtype='string', id=None), 'language': Value(dtype='string', id=None) } ) ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: splits = [] if self.config.name == "raw": downloaded_files = dl_manager.download_and_extract(["data/many_emotions.json.gz"]) for lang in ["en", "fr", "it", "es", "de"]: splits.append(datasets.SplitGenerator(name=lang, gen_kwargs={"filepaths": downloaded_files, "language": lang, "dataset": "raw"})) else: for split in ["train", "validation", "test"]: downloaded_files = dl_manager.download_and_extract([f"data/split_dataset_{split}.jsonl.gz"]) splits.append(datasets.SplitGenerator(name=split, gen_kwargs={"filepaths": downloaded_files, "dataset": "split"})) return splits def _generate_examples(self, filepaths, dataset, license=None, language=None): if dataset == "raw": for i, filepath in enumerate(filepaths): with open(filepath, encoding="utf-8") as f: for idx, line in enumerate(f): example = json.loads(line) if language != "all": example = { "id": example["id"], 'text': example["text" if language == "en" else language], 'label': example["label"], 'dataset': example["dataset"], 'license': example["license"] } label = _CLASS_NAMES[example["label"]] if label == "no emotion": label = "neutral" elif label == "happiness": label = "joy" example.update({ "label": label }) yield example["id"], example else: for i, filepath in enumerate(filepaths): with open(filepath, encoding="utf-8") as f: for idx, line in enumerate(f): example = json.loads(line) yield example["id"], example if __name__ == "__main__": dataset = load_dataset("ma2za/many_emotions", name="raw") print()