--- license: unknown --- it's like [imagenet.int8](https://huggingface.co/datasets/cloneofsimo/imagenet.int8) but * train+val in1k (1,331,168 samples) * flux-dev vae, latent (after dequant) channels scaled to N(0,1) * quantization uses int8 not uint8 (scaling factor 127/4) basic decode test: ```python # huggingface-cli download --repo-type dataset main-horse/in1k.int8 --revision flux-1.0-dev --local-dir ./imagenet_int8 import torch from streaming import StreamingDataset import streaming.base.util as util from diffusers import AutoencoderKL from diffusers.image_processor import VaeImageProcessor # Constants from normalization CHANNEL_MEANS = torch.tensor([ -0.008, -1.337, 0.335, -0.077, -0.134, 0.320, -1.196, 0.545, -0.159, 0.284, 0.584, 0.062, -0.319, 0.001, -0.859, -0.246 ], device='cuda') CHANNEL_STDS = torch.tensor([ 1.996, 3.531, 2.036, 1.428, 1.510, 1.710, 3.108, 2.410, 1.810, 2.670, 1.711, 1.941, 2.648, 2.734, 2.250, 2.479 ], device='cuda') def unnormalize_latents(x: torch.Tensor) -> torch.Tensor: """Undo the N(0,1) normalization""" return x * CHANNEL_STDS[:,None] + CHANNEL_MEANS[:,None] # Clean up any stale shared memory util.clean_stale_shared_memory() # Load the int8 dataset remote_dir = "./imagenet_int8" local_dir = "./local_test_dir2" dataset = StreamingDataset( local=local_dir, remote=remote_dir, split=None, shuffle=False, batch_size=32 ) dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, num_workers=0) # Get the 5th sample batch = next(iter(dataloader)) i = 5 # Get 5th sample # Convert int8 latent back to float and reshape latent = batch['latent'][i].reshape(16, 1024).cuda().float() label = batch['label'][i].item() print(f"Processing sample {i} with label {label}") print(f"Latent shape before processing: {latent.shape}") # First undo the int8 quantization by scaling latent = latent / 31.75 # Should now be ~N(0,1) # Then undo the normalization to get back to original distribution latent = unnormalize_latents(latent) # Reshape to VAE expected format (1, 16, 32, 32) latent = latent.reshape(1, 16, 32, 32) print(f"Final latent shape: {latent.shape}") print(f"Latent stats after denorm: min={latent.min().item():.3f}, max={latent.max().item():.3f}, mean={latent.mean().item():.3f}, std={latent.std().item():.3f}") # Load and set up VAE vae = AutoencoderKL.from_pretrained('black-forest-labs/FLUX.1-dev', subfolder='vae', device_map=0, attn_implementation='sdpa') processor = VaeImageProcessor(vae_scale_factor=2 ** (len(vae.config.block_out_channels) - 1)) # Decode and save with torch.no_grad(): decoded = vae.decode(latent).sample img = processor.postprocess(decoded, do_denormalize=[True, True])[0] img.save("5th_image_from_int8.png") print("Saved decoded image as 5th_image_from_int8.png") ``` You should get something like this: ![](5th_image_from_int8.png) open an issue if you see any technical problems (license-related issues not welcome)