# coding=utf-8 import csv import os import yaml from itertools import groupby from pathlib import Path import torchaudio import datasets _VERSION = "3.0.0" _CITATION = """ @article{CATTONI2021101155, title = {MuST-C: A multilingual corpus for end-to-end speech translation}, author = {Roldano Cattoni and Mattia Antonino {Di Gangi} and Luisa Bentivogli and Matteo Negri and Marco Turchi}, journal = {Computer Speech & Language}, volume = {66}, pages = {101155}, year = {2021}, issn = {0885-2308}, doi = {https://doi.org/10.1016/j.csl.2020.101155}, url = {https://www.sciencedirect.com/science/article/pii/S0885230820300887}, } """ _DESCRIPTION = """ MuST-C is a multilingual speech translation corpus whose size and quality facilitates the training of end-to-end systems for speech translation from English into several languages. For each target language, MuST-C comprises several hundred hours of audio recordings from English [TED Talks](https://www.ted.com/talks), which are automatically aligned at the sentence level with their manual transcriptions and translations. """ _HOMEPAGE = "https://ict.fbk.eu/must-c/" _LANGUAGES = ["de", "ja", "zh"] _SAMPLE_RATE = 16_000 class MUSTC(datasets.GeneratorBasedBuilder): """MUSTC Dataset.""" VERSION = datasets.Version(_VERSION) BUILDER_CONFIGS = [ datasets.BuilderConfig(name=f"en-{lang}", version=datasets.Version(_VERSION)) for lang in _LANGUAGES ] @property def manual_download_instructions(self): return f"""Please download the MUST-C v3 from https://ict.fbk.eu/must-c/ and unpack it with `tar xvzf MUSTC_v3.0_{self.config.name}.tar.gz`. Make sure to pass the path to the directory in which you unpacked the downloaded file as `data_dir`: `datasets.load_dataset('mustc', data_dir="path/to/dir")` """ # MUSTC_ROOT # <- point here in --data_dir in arg # └── en-de # └── data # ├── dev # │ ├── txt # │ │ ├── dev.de # │ │ ├── dev.en # │ │ └── dev.yaml # │ └── wav # │ ├── ted_767.wav # │ ├── [...] # │ └── ted_837.wav # ├── train # │ ├── txt/ # │ └── wav/ # ├── tst-COMMON # │ ├── txt/ # │ └── wav/ # └── tst-HE # ├── txt/ # └── wav/ def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( client_id=datasets.Value("string"), file=datasets.Value("string"), audio=datasets.Audio(sampling_rate=_SAMPLE_RATE), sentence=datasets.Value("string"), translation=datasets.Value("string"), id=datasets.Value("string"), ), supervised_keys=("file", "translation"), homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): source_lang, target_lang = self.config.name.split("-") assert source_lang == "en" assert target_lang in _LANGUAGES data_root = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) root_path = Path(data_root) / self.config.name if not os.path.exists(root_path): raise FileNotFoundError( "Dataset not found. Manual download required. " f"{self.manual_download_instructions}" ) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"root_path": root_path, "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"root_path": root_path, "split": "dev"}, ), datasets.SplitGenerator( name=datasets.Split("tst.COMMON"), gen_kwargs={"root_path": root_path, "split": "tst-COMMON"}, ), datasets.SplitGenerator( name=datasets.Split("tst.HE"), gen_kwargs={"root_path": root_path, "split": "tst-HE"}, ), ] def _generate_examples(self, root_path, split): source_lang, target_lang = self.config.name.split("-") # Load audio segments txt_root = Path(root_path) / "data" / split / "txt" with (txt_root / f"{split}.yaml").open("r") as f: segments = yaml.load(f, Loader=yaml.BaseLoader) # Load source and target utterances with open(txt_root / f"{split}.{source_lang}", "r") as s_f: with open(txt_root / f"{split}.{target_lang}", "r") as t_f: s_lines = s_f.readlines() t_lines = t_f.readlines() assert len(s_lines) == len(t_lines) == len(segments) for i, (src, trg) in enumerate(zip(s_lines, t_lines)): segments[i][source_lang] = src.rstrip() segments[i][target_lang] = trg.rstrip() # Load waveforms _id = 0 wav_root = Path(root_path) / "data" / split / "wav" for wav_filename, _seg_group in groupby(segments, lambda x: x["wav"]): wav_path = wav_root / wav_filename seg_group = sorted(_seg_group, key=lambda x: float(x["offset"])) for i, segment in enumerate(seg_group): offset = int(float(segment["offset"]) * int(_SAMPLE_RATE)) duration = int(float(segment["duration"]) * int(_SAMPLE_RATE)) waveform, sr = torchaudio.load(wav_path, frame_offset=offset, num_frames=duration) assert duration == waveform.size(1), (duration, waveform.size(1)) assert sr == int(_SAMPLE_RATE), (sr, int(_SAMPLE_RATE)) yield _id, { "file": wav_path.as_posix(), "audio": { "array": waveform.squeeze().numpy(), "path": wav_path.as_posix(), "sampling_rate": sr, }, "sentence": segment[source_lang], "translation": segment[target_lang], "client_id": segment["speaker_id"], "id": f"{wav_path.stem}_{i}", } _id += 1