# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """CNN/Dailymail Dutch summarization dataset.""" import csv import datasets _DESCRIPTION = """\ This dataset is the CNN/Dailymail dataset translated to Dutch. This is the original dataset: ``` load_dataset("cnn_dailymail", '3.0.0') ``` And this is the HuggingFace translation pipeline: ``` pipeline( task='translation_en_to_nl', model='Helsinki-NLP/opus-mt-en-nl', tokenizer='Helsinki-NLP/opus-mt-en-nl') ``` """ # The second citation introduces the source data, while the first # introduces the specific form (non-anonymized) we use here. _CITATION = """\ @article{DBLP:journals/corr/SeeLM17, author = {Abigail See and Peter J. Liu and Christopher D. Manning}, title = {Get To The Point: Summarization with Pointer-Generator Networks}, journal = {CoRR}, volume = {abs/1704.04368}, year = {2017}, url = {http://arxiv.org/abs/1704.04368}, archivePrefix = {arXiv}, eprint = {1704.04368}, timestamp = {Mon, 13 Aug 2018 16:46:08 +0200}, biburl = {https://dblp.org/rec/bib/journals/corr/SeeLM17}, bibsource = {dblp computer science bibliography, https://dblp.org} } @inproceedings{hermann2015teaching, title={Teaching machines to read and comprehend}, author={Hermann, Karl Moritz and Kocisky, Tomas and Grefenstette, Edward and Espeholt, Lasse and Kay, Will and Suleyman, Mustafa and Blunsom, Phil}, booktitle={Advances in neural information processing systems}, pages={1693--1701}, year={2015} } """ _TRAIN_DOWNLOAD_URLS = [ "https://huggingface.co/datasets/ml6team/cnn_dailymail_nl/resolve/main/cnn_dailymail_nl_train_000000000000.csv.gz", "https://huggingface.co/datasets/ml6team/cnn_dailymail_nl/resolve/main/cnn_dailymail_nl_train_000000000001.csv.gz", "https://huggingface.co/datasets/ml6team/cnn_dailymail_nl/resolve/main/cnn_dailymail_nl_train_000000000002.csv.gz", ] _VALIDATION_DOWNLOAD_URL = "https://huggingface.co/datasets/ml6team/cnn_dailymail_nl/resolve/main/cnn_dailymail_nl_validation.csv.gz" _TEST_DOWNLOAD_URL = "https://huggingface.co/datasets/ml6team/cnn_dailymail_nl/resolve/main/cnn_dailymail_nl_test.csv.gz" _ID = "id" _HIGHLIGHTS = "highlights" _ARTICLE = "article" class CnnDailymailNl(datasets.GeneratorBasedBuilder): """CNN/Dailymail Dutch summarization dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { _ARTICLE: datasets.Value("string"), _HIGHLIGHTS: datasets.Value("string"), _ID: datasets.Value("string"), } ), supervised_keys=None, homepage="https://huggingface.co/datasets/ml6team/cnn_dailymail_nl", citation=_CITATION, ) def _split_generators(self, dl_manager): train_paths = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URLS) validation_path = dl_manager.download_and_extract(_VALIDATION_DOWNLOAD_URL) test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_paths} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": [validation_path]}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepaths": [test_path]} ), ] def _generate_examples(self, filepaths): """Generate Dutch CNN/Dailymail examples.""" for filepath in filepaths: # training data is divided over multiple shards with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.reader( csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True, ) next(csv_reader) # skip header for row in csv_reader: article_id, article, highlights = row yield article_id, { _ARTICLE: article, _HIGHLIGHTS: highlights, _ID: article_id, }