"""Haberman""" from typing import List import datasets import pandas VERSION = datasets.Version("1.0.0") DESCRIPTION = "Haberman dataset from the UCI ML repository." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Haberman" _URLS = ("https://archive.ics.uci.edu/ml/datasets/Haberman") _CITATION = """ @misc{misc_haberman's_survival_43, author = {Haberman,S.}, title = {{Haberman's Survival}}, year = {1999}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5XK51}} }""" # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/haberman/raw/main/haberman.data" } features_types_per_config = { "survival": { "age": datasets.Value("int32"), "year_of_operation": datasets.Value("int32"), "number_of_axillary_nodes": datasets.Value("int32"), "has_survived_5_years": datasets.ClassLabel(num_classes=2, names=("no", "yes")) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class HabermanConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(HabermanConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Haberman(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "survival" BUILDER_CONFIGS = [ HabermanConfig(name="survival", description="Haberman for binary classification.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row