"""Isolet dataset.""" from typing import List import datasets import pandas VERSION = datasets.Version("1.0.0") DESCRIPTION = "Isolet dataset from the UCI ML repository." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Isolet" _URLS = ("https://archive-beta.ics.uci.edu/dataset/54/isolet") _CITATION = """ @misc{misc_isolet_54, author = {Cole,Ron & Fanty,Mark}, title = {{ISOLET}}, year = {1994}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C51G69}} }""" # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/isolet/resolve/main/isolet.zip" } features_types_per_config = { "isolet": { str(i): datasets.Value("float64") for i in range(617) } } features_types_per_config["isolet"]["617"] = datasets.ClassLabel(num_classes=26) features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class IsoletConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(IsoletConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Isolet(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "isolet" BUILDER_CONFIGS = [ IsoletConfig(name="isolet", description="Isolet for letter classification."), ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath + "/isolet1+2+3+4.data", header=None).infer_objects() data = self.preprocess(data, config=self.config.name) for row_id, row in data.iterrows(): data_row = dict(row) data_row["617"] = int(data_row["617"]) yield row_id, data_row def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame: data.columns = [str(i) for i in range(618)] data = data.astype({"617": "int8"}) data.loc[:, "617"] = data["617"].apply(lambda x: int(x) - 1) data = data.astype({str(i): "float64" for i in range(617)}) return data