"""Optdigits Dataset""" from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") _ENCODING_DICS = {} _BASE_FEATURE_NAMES = [ "att1", "att2", "att3", "att4", "att5", "att6", "att7", "att8", "att9", "att10", "att11", "att12", "att13", "att14", "att15", "att16", "att17", "att18", "att19", "att20", "att21", "att22", "att23", "att24", "att25", "att26", "att27", "att28", "att29", "att30", "att31", "att32", "att33", "att34", "att35", "att36", "att37", "att38", "att39", "att40", "att41", "att42", "att43", "att44", "att45", "att46", "att47", "att48", "att49", "att50", "att51", "att52", "att53", "att54", "att55", "att56", "att57", "att58", "att59", "att60", "att61", "att62", "att63", "att64", "class", ] DESCRIPTION = "Optdigits dataset." _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/80/optical+recognition+of+handwritten+digits" _URLS = ("https://archive-beta.ics.uci.edu/dataset/80/optical+recognition+of+handwritten+digits") _CITATION = """ @misc{misc_optical_recognition_of_handwritten_digits_80, author = {Alpaydin,E. & Kaynak,C.}, title = {{Optical Recognition of Handwritten Digits}}, year = {1998}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C50P49}} } """ # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/optdigits/resolve/main/optdigits.data" } features_types_per_config = { "optdigits": { "att1": datasets.Value("int64"), "att2": datasets.Value("int64"), "att3": datasets.Value("int64"), "att4": datasets.Value("int64"), "att5": datasets.Value("int64"), "att6": datasets.Value("int64"), "att7": datasets.Value("int64"), "att8": datasets.Value("int64"), "att9": datasets.Value("int64"), "att10": datasets.Value("int64"), "att11": datasets.Value("int64"), "att12": datasets.Value("int64"), "att13": datasets.Value("int64"), "att14": datasets.Value("int64"), "att15": datasets.Value("int64"), "att16": datasets.Value("int64"), "att17": datasets.Value("int64"), "att18": datasets.Value("int64"), "att19": datasets.Value("int64"), "att20": datasets.Value("int64"), "att21": datasets.Value("int64"), "att22": datasets.Value("int64"), "att23": datasets.Value("int64"), "att24": datasets.Value("int64"), "att25": datasets.Value("int64"), "att26": datasets.Value("int64"), "att27": datasets.Value("int64"), "att28": datasets.Value("int64"), "att29": datasets.Value("int64"), "att30": datasets.Value("int64"), "att31": datasets.Value("int64"), "att32": datasets.Value("int64"), "att33": datasets.Value("int64"), "att34": datasets.Value("int64"), "att35": datasets.Value("int64"), "att36": datasets.Value("int64"), "att37": datasets.Value("int64"), "att38": datasets.Value("int64"), "att39": datasets.Value("int64"), "att40": datasets.Value("int64"), "att41": datasets.Value("int64"), "att42": datasets.Value("int64"), "att43": datasets.Value("int64"), "att44": datasets.Value("int64"), "att45": datasets.Value("int64"), "att46": datasets.Value("int64"), "att47": datasets.Value("int64"), "att48": datasets.Value("int64"), "att49": datasets.Value("int64"), "att50": datasets.Value("int64"), "att51": datasets.Value("int64"), "att52": datasets.Value("int64"), "att53": datasets.Value("int64"), "att54": datasets.Value("int64"), "att55": datasets.Value("int64"), "att56": datasets.Value("int64"), "att57": datasets.Value("int64"), "att58": datasets.Value("int64"), "att59": datasets.Value("int64"), "att60": datasets.Value("int64"), "att61": datasets.Value("int64"), "att62": datasets.Value("int64"), "att63": datasets.Value("int64"), "att64": datasets.Value("int64"), "class": datasets.ClassLabel(num_classes=10) } } for i in range(10): features_types_per_config[str(i)] = { "att1": datasets.Value("int64"), "att2": datasets.Value("int64"), "att3": datasets.Value("int64"), "att4": datasets.Value("int64"), "att5": datasets.Value("int64"), "att6": datasets.Value("int64"), "att7": datasets.Value("int64"), "att8": datasets.Value("int64"), "att9": datasets.Value("int64"), "att10": datasets.Value("int64"), "att11": datasets.Value("int64"), "att12": datasets.Value("int64"), "att13": datasets.Value("int64"), "att14": datasets.Value("int64"), "att15": datasets.Value("int64"), "att16": datasets.Value("int64"), "att17": datasets.Value("int64"), "att18": datasets.Value("int64"), "att19": datasets.Value("int64"), "att20": datasets.Value("int64"), "att21": datasets.Value("int64"), "att22": datasets.Value("int64"), "att23": datasets.Value("int64"), "att24": datasets.Value("int64"), "att25": datasets.Value("int64"), "att26": datasets.Value("int64"), "att27": datasets.Value("int64"), "att28": datasets.Value("int64"), "att29": datasets.Value("int64"), "att30": datasets.Value("int64"), "att31": datasets.Value("int64"), "att32": datasets.Value("int64"), "att33": datasets.Value("int64"), "att34": datasets.Value("int64"), "att35": datasets.Value("int64"), "att36": datasets.Value("int64"), "att37": datasets.Value("int64"), "att38": datasets.Value("int64"), "att39": datasets.Value("int64"), "att40": datasets.Value("int64"), "att41": datasets.Value("int64"), "att42": datasets.Value("int64"), "att43": datasets.Value("int64"), "att44": datasets.Value("int64"), "att45": datasets.Value("int64"), "att46": datasets.Value("int64"), "att47": datasets.Value("int64"), "att48": datasets.Value("int64"), "att49": datasets.Value("int64"), "att50": datasets.Value("int64"), "att51": datasets.Value("int64"), "att52": datasets.Value("int64"), "att53": datasets.Value("int64"), "att54": datasets.Value("int64"), "att55": datasets.Value("int64"), "att56": datasets.Value("int64"), "att57": datasets.Value("int64"), "att58": datasets.Value("int64"), "att59": datasets.Value("int64"), "att60": datasets.Value("int64"), "att61": datasets.Value("int64"), "att62": datasets.Value("int64"), "att63": datasets.Value("int64"), "att64": datasets.Value("int64"), "class": datasets.ClassLabel(num_classes=2) } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class OptdigitsConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(OptdigitsConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Optdigits(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "optdigits" BUILDER_CONFIGS = [ OptdigitsConfig(name="optdigits", description="Optdigits for multiclass classification."), OptdigitsConfig(name="0", description="Optdigits for binary classification: is this a 0?."), OptdigitsConfig(name="1", description="Optdigits for binary classification: is this a 1?."), OptdigitsConfig(name="2", description="Optdigits for binary classification: is this a 2?."), OptdigitsConfig(name="3", description="Optdigits for binary classification: is this a 3?."), OptdigitsConfig(name="4", description="Optdigits for binary classification: is this a 4?."), OptdigitsConfig(name="5", description="Optdigits for binary classification: is this a 5?."), OptdigitsConfig(name="6", description="Optdigits for binary classification: is this a 6?."), OptdigitsConfig(name="7", description="Optdigits for binary classification: is this a 7?."), OptdigitsConfig(name="8", description="Optdigits for binary classification: is this a 8?."), OptdigitsConfig(name="9", description="Optdigits for binary classification: is this a 9?.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, header=None) data.columns = _BASE_FEATURE_NAMES data = self.preprocess(data) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: for feature in _ENCODING_DICS: encoding_function = partial(self.encode, feature) data.loc[:, feature] = data[feature].apply(encoding_function) if self.config.name == "0": data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0) if self.config.name == "1": data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0) if self.config.name == "2": data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0) if self.config.name == "3": data["class"] = data["class"].apply(lambda x: 1 if x == 3 else 0) if self.config.name == "4": data["class"] = data["class"].apply(lambda x: 1 if x == 4 else 0) if self.config.name == "5": data["class"] = data["class"].apply(lambda x: 1 if x == 5 else 0) if self.config.name == "6": data["class"] = data["class"].apply(lambda x: 1 if x == 6 else 0) if self.config.name == "7": data["class"] = data["class"].apply(lambda x: 1 if x == 7 else 0) if self.config.name == "8": data["class"] = data["class"].apply(lambda x: 1 if x == 8 else 0) if self.config.name == "9": data["class"] = data["class"].apply(lambda x: 1 if x == 9 else 0) return data[list(features_types_per_config[self.config.name].keys())] def encode(self, feature, value): if feature in _ENCODING_DICS: return _ENCODING_DICS[feature][value] raise ValueError(f"Unknown feature: {feature}")