"""StudentPerformance Dataset""" from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") _BASE_FEATURE_NAMES = [ "sex", "ethnicity", "parental_level_of_education", "has_standard_lunch", "has_completed_preparation_test", "math_score", "reading_score", "writing_score" ] _ENCODING_DICS = { "gender": { "female": 0, "male": 1 }, "parental_level_of_education": { "some high school": 0, "high school": 1, "some college": 2, "bachelor's degree": 3, "master's degree": 4, "associate's degree": 5, }, "has_standard_lunch" : { "free/reduced": 0, "standard": 1 }, "has_completed_preparation_test": { "none": 0, "completed": 1 } } DESCRIPTION = "StudentPerformance dataset." _HOMEPAGE = "https://www.kaggle.com/datasets/ulrikthygepedersen/student_performances" _URLS = ("https://www.kaggle.com/datasets/ulrikthygepedersen/student_performances") _CITATION = """""" # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/student_performance/raw/main/student_performance.csv", } features_types_per_config = { "encoding": { "feature": datasets.Value("string"), "original_value": datasets.Value("string"), "encoded_value": datasets.Value("int64") }, "math": { "sex": datasets.Value("int8"), "ethnicity": datasets.Value("string"), "parental_level_of_education": datasets.Value("int8"), "has_standard_lunch": datasets.Value("int8"), "test_preparation_course": datasets.Value("string"), "reading_score": datasets.Value("int64"), "writing_score": datasets.Value("int64"), "has_passed_math_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes")) }, "writing": { "sex": datasets.Value("int8"), "ethnicity": datasets.Value("string"), "parental_level_of_education": datasets.Value("int8"), "has_standard_lunch": datasets.Value("int8"), "test_preparation_course": datasets.Value("string"), "reading_score": datasets.Value("int64"), "math_score": datasets.Value("int64"), "has_passed_writing_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes")), }, "reading": { "sex": datasets.Value("int8"), "ethnicity": datasets.Value("string"), "parental_level_of_education": datasets.Value("int8"), "has_standard_lunch": datasets.Value("int8"), "test_preparation_course": datasets.Value("string"), "writing_score": datasets.Value("int64"), "math_score": datasets.Value("int64"), "has_passed_reading_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes")), } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class StudentPerformanceConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(StudentPerformanceConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class StudentPerformance(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "math" BUILDER_CONFIGS = [ StudentPerformanceConfig(name="encoding", description="Encoding dictionaries."), StudentPerformanceConfig(name="math", description="Binary classification, predict if the student has passed the math exam."), StudentPerformanceConfig(name="reading", description="Binary classification, predict if the student has passed the reading exam."), StudentPerformanceConfig(name="writing", description="Binary classification, predict if the student has passed the writing exam."), ] def _info(self): if self.config.name not in features_per_config: raise ValueError(f"Unknown configuration: {self.config.name}") info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath) data = self.preprocess(data, config=self.config.name) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame, config: str = "cut") -> pandas.DataFrame: if config == "encoding": return self.encoding_dics() data.columns = [c.replace("\"", "") for c in data.columns] data.loc[:, "race/ethnicity"] = data["race/ethnicity"].apply(lambda x: x.replace("group ", "")) for feature in _ENCODING_DICS: encoding_function = partial(self.encode, feature) data.loc[:, feature] = data[feature].apply(encoding_function) data.columns = _BASE_FEATURE_NAMES if config == "math": data = data.rename(colums={"math_score", "has_passed_math_exam"}) return data[list(features_types_per_config["math"].keys())] elif config == "reading": data = data.rename(colums={"reading_score", "has_passed_reading_exam"}) return data[list(features_types_per_config["reading"].keys())] elif config == "writing": data = data.rename(colums={"writing_score", "has_passed_writing_exam"}) return data[list(features_types_per_config["writing"].keys())] else: raise ValueError(f"Unknown config: {config}") def encode(self, feature, value): return _ENCODING_DICS[feature][value] def encoding_dics(self): data = [pandas.Dataframe([(feature, original, encoded) for original, encoded in d.items()]) for feature, d in _ENCODING_DICS.items()] data = pandas.concat(data, axis="rows") return data