from datasets import load_dataset from dataclasses import dataclass, field import logging from transformers import HfArgumentParser from tqdm import tqdm from typing import Dict, List import json logger = logging.getLogger() logger.setLevel(logging.INFO) console_handler = logging.StreamHandler() console_handler.setFormatter( logging.Formatter("[%(asctime)s %(levelname)s] %(message)s") ) logger.handlers = [console_handler] @dataclass class ConversionAgruments: path: str = field(metadata={"help": "Path to the MAMARCO dataset"}) out: str = field(metadata={"help": "Output path"}) @dataclass class QRel: doc: int score: int def load_json(path: str, split: str = "train") -> List[str]: dataset = load_dataset("json", data_files=path, split=split) cache: List[str] = [] for row in tqdm(dataset, desc=f"loading {path}"): index = int(row["_id"]) if index >= len(cache): cache.extend([""] * (1 + 2 * max(index, len(cache)))) cache[index] = row["text"] return cache def load_qrel(path: str) -> Dict[int, List[QRel]]: dataset = load_dataset("csv", data_files=path, split="train", delimiter="\t") print(dataset.features) cache: Dict[int, List[QRel]] = {} for row in tqdm(dataset, desc=f"loading {path}"): qid = int(row["query-id"]) qrel = QRel(int(row["corpus-id"]), int(row["score"])) if qid in cache: cache[qid].append(qrel) else: cache[qid] = [qrel] return cache def process( qrels: Dict[int, List[QRel]], queries: List[str], corpus: List[str] ) -> List[Dict]: result = [] for query, rels in tqdm(qrels.items(), desc="processing split"): pos = [ {"doc": corpus[rel.doc], "score": rel.score} for rel in rels if rel.doc < len(corpus) and rel.score > 0 and corpus[rel.doc] != "" ] neg = [ {"doc": corpus[rel.doc], "score": rel.score} for rel in rels if rel.doc < len(corpus) and rel.score == 0 and corpus[rel.doc] != "" ] group = {"query": queries[query], "pos": pos} if len(neg) > 0: group["neg"] = neg result.append(group) return result def main(): parser = HfArgumentParser((ConversionAgruments)) (args,) = parser.parse_args_into_dataclasses() print(f"Args: {args}") corpus = load_json(f"{args.path}/corpus.jsonl", split="train") queries = load_json(f"{args.path}/queries.jsonl") qrels = { "dev": process(load_qrel(f"{args.path}/qrels/dev.tsv"), queries, corpus), "test": process(load_qrel(f"{args.path}/qrels/test.tsv"), queries, corpus), "train": process(load_qrel(f"{args.path}/qrels/train.tsv"), queries, corpus), } print("processing done") for split, data in qrels.items(): with open(f"{args.out}/{split}.jsonl", "w") as out: for item in data: json.dump(item, out) out.write("\n") print("done") if __name__ == "__main__": main()