--- # pretty_name: "" # Example: "MS MARCO Terrier Index" tags: - pyterrier - pyterrier-artifact - pyterrier-artifact.dense_index - pyterrier-artifact.dense_index.flex task_categories: - text-retrieval viewer: false --- # webis-touche2020.retromae.flex ## Description RetroMAE index for Webis-Touche (v2) ## Usage ```python # Load the artifact import pyterrier_alpha as pta artifact = pta.Artifact.from_hf('pyterrier/webis-touche2020.retromae.flex') artifact.np_retriever() ``` ## Benchmarks `webis-touche2020/v2` | name | nDCG@10 | R@1000 | |:----------|----------:|---------:| | np (flat) | 0.3258 | 0.6429 | ## Reproduction ```python import pyterrier as pt from tqdm import tqdm import ir_datasets from pyterrier_dr import FlexIndex, RetroMAE pipeline = RetroMAE.msmarco_distill() >> FlexIndex("webis-touche2020/v2.retromae.flex") dataset = ir_datasets.load('beir/webis-touche2020/v2') docs = ({'docno': d.doc_id, 'text': '{title}\n{text}'.format(**d._asdict())} for d in tqdm(dataset.docs)) pipeline.index(docs) ``` ## Metadata ``` { "type": "dense_index", "format": "flex", "vec_size": 768, "doc_count": 382545 } ```