"""FaQUAD-NLI dataset""" import datasets import pandas as pd import json _CITATION = """ """ _DESCRIPTION = """ """ _URLS = { "data": "https://raw.githubusercontent.com/liafacom/faquad/6ad978f20672bb41625b3b71fbe4a88b893d0a86/data/dataset.json", "spans": "https://huggingface.co/datasets/ruanchaves/faquad-nli/raw/main/spans.csv" } def check_overlap(interval1, interval2): """Check for overlap between two integer intervals""" return not (interval1[1] < interval2[0] or interval2[1] < interval1[0]) class Faquad(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "document_index": datasets.Value("int32"), "document_title": datasets.Value("string"), "paragraph_index": datasets.Value("int32"), "question": datasets.Value("string"), "answer": datasets.Value("string"), "label": datasets.Value("int32") }), supervised_keys=None, homepage="https://github.com/franciellevargas/HateBR", citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data": downloaded_files["data"], "spans": downloaded_files["spans"], "split": "train" } ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "data": downloaded_files["data"], "spans": downloaded_files["spans"], "split": "validation" } ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data": downloaded_files["data"], "spans": downloaded_files["spans"], "split": "test" } ) ] def _generate_examples(self, data, spans, split): with open(data, 'r') as f: json_data = json.load(f) spans = pd.read_csv(spans).to_dict("records") counter = 0 for span_row in spans: if span_row["split"] != split: continue document_title = json_data["data"][ span_row["document_index"] ]["title"] sentence = json_data["data"][ span_row["document_index"] ]["paragraphs"][ span_row["paragraph_index"] ]["context"][ span_row["sentence_start_char"]:span_row["sentence_end_char"] ] sentence_interval = (span_row["sentence_start_char"], span_row["sentence_end_char"]) for qas_row in json_data["data"][ span_row["document_index"] ]["paragraphs"][ span_row["paragraph_index"] ]["qas"]: question = qas_row["question"] question_spans = [] for qas_answer in qas_row["answers"]: qas_answer_start_span = qas_answer["answer_start"] qas_answer_end_span = qas_answer["answer_start"] + len(qas_answer["text"]) question_spans.append((qas_answer_start_span, qas_answer_end_span)) for question_interval in question_spans: if check_overlap(sentence_interval, question_interval): yield counter, { "document_index": span_row["document_index"], "document_title": document_title, "paragraph_index": span_row["paragraph_index"], "question": question, "answer": sentence, "label": 1 } counter += 1 break else: yield counter, { "document_index": span_row["document_index"], "document_title": document_title, "paragraph_index": span_row["paragraph_index"], "question": question, "answer": sentence, "label": 0 } counter += 1