import os import datasets from typing import List import json logger = datasets.logging.get_logger(__name__) _CITATION = """ """ _DESCRIPTION = """ This is the dataset repository for PLOD Dataset accepted to be published at LREC 2022. The dataset can help build sequence labelling models for the task Abbreviation Detection. """ class PLODunfilteredConfig(datasets.BuilderConfig): """BuilderConfig for Conll2003""" def __init__(self, **kwargs): """BuilderConfig forConll2003. Args: **kwargs: keyword arguments forwarded to super. """ super(PLODunfilteredConfig, self).__init__(**kwargs) class PLODunfilteredConfig(datasets.GeneratorBasedBuilder): """PLOD Unfiltered dataset.""" BUILDER_CONFIGS = [ PLODunfilteredConfig(name="PLODunfiltered", version=datasets.Version("0.0.2"), description="PLOD unfiltered dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "pos_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "ADJ", "ADP", "ADV", "AUX", "CONJ", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", "SPACE" ] ) ), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "B-O", "B-AC", "I-AC", "B-LF", "I-LF" ] ) ), } ), supervised_keys=None, homepage="https://github.com/surrey-nlp/PLOD-AbbreviationDetection", citation=_CITATION, ) _URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-unfiltered/resolve/main/data/" _URLS = { "train": _URL + "PLOS-train70-unfiltered-pos_bio.json", "dev": _URL + "PLOS-val15-unfiltered-pos_bio.json", "test": _URL + "PLOS-test15-unfiltered-pos_bio.json" } def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: urls_to_download = self._URLS downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}) ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) with open(filepath) as f: plod = json.load(f) for object in plod: id_ = int(object['id']) yield id_, { "id": str(id_), "tokens": object['tokens'], "pos_tags": object['pos_tags'], "ner_tags": object['ner_tags'], }