""" Script used to process UIT-ViQuAD 2.0. Source: https://github.com/tuanbc88/ai_question_answering/tree/master/machine_reading_comprehension/02_datasets """ import os import json import pandas as pd from itertools import groupby from datasets import Dataset, DatasetDict def deduplicate_answers(answers): answers_sorted = sorted(answers, key=lambda x: (x['text'], x['answer_start'])) unique_answers = [next(group) for _, group in groupby(answers_sorted, key=lambda x: (x['text'], x['answer_start']))] return unique_answers data_dir = "UIT-ViQuAD 2.0" dataset_dict = {} for split in ["train", "dev", "test"]: fname = os.path.join(data_dir, f"{split}.json") data = json.load(open(fname)) rows = [] title_i = 0 for title_data in data["data"]: title = title_data["title"] ctx_i = 0 title_i += 1 for ctx_and_qs in title_data["paragraphs"]: questions = ctx_and_qs["qas"] context = ctx_and_qs["context"] q_i = 0 ctx_i += 1 question_set = set() # define default wherever answer is empty answer_default: list = [{'answer_start': -1, 'text': ''}] for q in questions: question = q["question"] answers = q["answers"] if "answers" in q else answer_default plausible_answers = q["plausible_answers"] if "plausible_answers" in q else answer_default # Dedup answers answers = deduplicate_answers(answers) plausible_answers = deduplicate_answers(plausible_answers) uit_id = q["id"] is_impossible = q["is_impossible"] if "is_impossible" in q else False # Check duplicate questions if question in question_set: print("---Found duplicate question: ", question, "---") print("Answer: ", answers) print("Answer plaus: ", plausible_answers) print("Impossible: ", is_impossible) continue q_i += 1 overall_id = f"{title_i:04d}-{ctx_i:04d}-{q_i:04d}" rows.append({ "id": overall_id, "uit_id": uit_id, "title": title, "context": context, "question": question, "answers": answers, "is_impossible": is_impossible, "plausible_answers": plausible_answers }) question_set.add(question) # Convert to Dataset df = pd.DataFrame(rows) dataset_dict[split if split!="dev" else "validation"] = Dataset.from_pandas(df) print(dataset_dict) hf_dataset = DatasetDict(dataset_dict) hf_name = "UIT-ViQuAD2.0" hf_dataset.push_to_hub(f"taidng/{hf_name}") print("Dataset uploaded successfully!")