""" Script used to process UIT-ViQuAD 2.0. Source: https://github.com/tuanbc88/ai_question_answering/tree/master/machine_reading_comprehension/02_datasets """ import os import json import pandas as pd from itertools import groupby from datasets import Dataset, DatasetDict, Features, Sequence, Value def deduplicate_answers(answers): answers_sorted = sorted(answers, key=lambda x: (x['text'], x['answer_start'])) unique_answers = [next(group) for _, group in groupby(answers_sorted, key=lambda x: (x['text'], x['answer_start']))] return unique_answers data_dir = "UIT-ViQuAD 2.0" dataset_dict = {} features = Features({ 'id': Value('string'), 'uit_id': Value('string'), 'title': Value('string'), 'context': Value('string'), 'question': Value('string'), 'answers': Sequence(feature={'text': Value('string'), 'answer_start': Value('int32')}), 'is_impossible': Value('bool'), 'plausible_answers': Sequence(feature={'text': Value('string'), 'answer_start': Value('int32')}) }) for split in ["train", "dev", "test"]: fname = os.path.join(data_dir, f"{split}.json") data = json.load(open(fname)) ids, uit_ids, titles, contexts, questions, all_answers, impossibles, all_plausible_answers = [], [], [], [], [], [], [], [] title_i = 0 print("-"*20, split, len(data["data"]), "-"*20) for title_data in data["data"]: title = title_data["title"] ctx_i = 0 title_i += 1 for ctx_and_qs in title_data["paragraphs"]: qas = ctx_and_qs["qas"] context = ctx_and_qs["context"] q_i = 0 ctx_i += 1 question_set = set() for q in qas: question = q["question"] answers = q.get("answers", None) plausible_answers = q.get("plausible_answers", None) # Dedup answers if answers: answers = deduplicate_answers(answers) if plausible_answers: plausible_answers = deduplicate_answers(plausible_answers) uit_id = q["id"] is_impossible = q.get("is_impossible", False) # Check duplicate questions if question in question_set: print("---Found duplicate question: ", question, "---") print("Answer: ", answers) print("Answer plaus: ", plausible_answers) print("Impossible: ", is_impossible) continue q_i += 1 overall_id = f"{title_i:04d}-{ctx_i:04d}-{q_i:04d}" # Append data to lists ids.append(overall_id) uit_ids.append(uit_id) titles.append(title) contexts.append(context) questions.append(question) all_answers.append(answers) impossibles.append(is_impossible) all_plausible_answers.append(plausible_answers) question_set.add(question) # Convert to Dataset dataset = Dataset.from_dict({ 'id': ids, 'uit_id': uit_ids, 'title': titles, 'context': contexts, 'question': questions, 'answers': all_answers, 'is_impossible': impossibles, 'plausible_answers': all_plausible_answers }, features=features) dataset_dict[split if split!="dev" else "validation"] = dataset print(dataset_dict) hf_dataset = DatasetDict(dataset_dict) hf_name = "UIT-ViQuAD2.0" hf_dataset.push_to_hub(f"taidng/{hf_name}") print("Dataset uploaded successfully!")