# Copyright (c) 2022, texture.design. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import datasets DESCRIPTION = """\ Multi-photo texture captures in urban scenes focusing on floors and walls. Each set contains variations of the same texture theme. """ REPO_PREFIX = "https://huggingface.co/datasets/texturedesign/td02_urban-surface-textures" DOWNLOAD_PREFIX = REPO_PREFIX + "/resolve/main" INDEX_URLS = { "train": REPO_PREFIX + "/raw/main/train/metadata.jsonl", "test": REPO_PREFIX + "/raw/main/test/metadata.jsonl", } class NaturalGroundTextures(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="JXL@4K", version=VERSION, description="The original resolution dataset."), datasets.BuilderConfig(name="JXL@2K", version=VERSION, description="Half-resolution dataset."), datasets.BuilderConfig(name="JXL@1K", version=VERSION, description="Quarter-resolution dataset."), datasets.BuilderConfig(name="PNG@1K", version=VERSION, description="Fallback version of the dataset."), ] DEFAULT_CONFIG_NAME = "JXL@2K" def _info(self): return datasets.DatasetInfo( description=DESCRIPTION, citation="", homepage="https://huggingface.co/texturedesign", license="cc-by-nc-4.0", features=datasets.Features( { "image": datasets.Image(), "set": datasets.Value("uint8"), } ) ) def _split_generators(self, dl_manager): data_dir = dl_manager.download(INDEX_URLS) train_lines = [json.loads(l) for l in open(data_dir["train"], "r", encoding="utf-8").readlines()] test_lines = [json.loads(l) for l in open(data_dir["test"], "r", encoding="utf-8").readlines()] def _get_file_url(row, split): file_name = row['file_name'] if self.config.name[:3] == "PNG": file_name = file_name.replace('.jxl', '.png') return (DOWNLOAD_PREFIX + '/' + split + '/' + file_name) train_files = dl_manager.download([_get_file_url(row, split='train') for row in train_lines]) test_files = dl_manager.download([_get_file_url(row, split='test') for row in test_lines]) return [ datasets.SplitGenerator(datasets.Split.TRAIN, dict(lines=train_lines, filenames=train_files)), datasets.SplitGenerator(datasets.Split.TEST, dict(lines=test_lines, filenames=test_files)), ] def _generate_examples(self, lines, filenames): try: if self.config.name[:3] == "JXL": from jxlpy import JXLImagePlugin import PIL.Image except (ImportError, ModuleNotFoundError): logger = datasets.logging.get_logger() logger.critical('\n\n\nERROR: Please install `jxlpy` from PyPI to use JPEG-XL images.\n') raise SystemExit for key, (data, filename) in enumerate(zip(lines, filenames)): # Load the images from disk with the correct format. image = PIL.Image.open(filename, formats=[self.config.name[:3].lower()]) sz = image.size # PNG files only available at quarter resolution. if self.config.name[:3] == "PNG": sz = (sz[0]*4, sz[1]*4) # Resize the images as specified by the user. if self.config.name[-2:] == "1K": image = image.resize(size=(sz[0]//4, sz[1]//4), resample=PIL.Image.Resampling.LANCZOS) elif self.config.name[-2:] == "2K": image = image.resize(size=(sz[0]//2, sz[1]//2), resample=PIL.Image.Resampling.LANCZOS) yield key, {"image": image, "set": data["set"]}