# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Cleaned Dutch split of the mC4 corpus.""" import json import gzip import textwrap import datasets import random from itertools import zip_longest logger = datasets.logging.get_logger(__name__) _CITATION = """ @article{JMLR:v21:20-074, author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, journal = {Journal of Machine Learning Research}, year = {2020}, volume = {21}, number = {140}, pages = {1-67}, url = {http://jmlr.org/papers/v21/20-074.html} } """ _DESCRIPTION = """\ A thoroughly cleaned version of the Dutch portion of the multilingual colossal, cleaned version of Common Crawl's web crawl corpus (mC4) by AllenAI. Based on Common Crawl dataset: "https://commoncrawl.org". This is the processed version of Google's mC4 dataset by AllenAI, with further cleaning detailed in the repository README file. """ _HOMEPAGE = "https://github.com/allenai/allennlp/discussions/5056" _LICENSE = "Open Data Commons Attribution License (ODC-By) v1.0" _DATA_URL_NL = "https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned/resolve/main/mc4_nl_cleaned/{split}/c4-nl{validation}-cleaned.tfrecord-{index:05d}-of-{n_shards:05d}.json.gz" _DATA_URL_EN = "https://huggingface.co/datasets/allenai/c4/resolve/1ddc917116b730e1859edef32896ec5c16be51d0/{name}/c4-{split}.{index:05d}-of-{n_shards:05d}.json.gz" _C4_EN_VARIANT = "en" _CONFIG_NAMES = ["micro", "tiny", "small", "medium", "large", "full"] _CONFIG_EN_NL_SUFFIX = "_en_nl" _CONFIGS = dict( micro={"train": 2, "validation": 1, "estimate": "1GB"}, tiny={"train": 100, "validation": 1, "estimate": "10GB"}, small={"train": 250, "validation": 1, "estimate": "25GB"}, medium={"train": 500, "validation": 2, "estimate": "50GB"}, large={"train": 750, "validation": 3, "estimate": "75GB"}, full={"train": 1024, "validation": 4, "estimate": "103GB"}, ) class Mc4NlCleanedConfig(datasets.BuilderConfig): """BuilderConfig for mC4 NL Cleaned.""" def __init__(self, **kwargs): """BuilderConfig for mC4 NL Cleaned." Args: **kwargs: keyword arguments forwarded to super. """ super().__init__(**kwargs) class Mc4(datasets.GeneratorBasedBuilder): """mC4, a colossal, cleaned version of Common Crawl's web crawl corpus.""" BUILDER_CONFIGS = [ Mc4NlCleanedConfig( name=name, version=datasets.Version("1.0.0"), description=textwrap.dedent( f"""\ A {name} cleaned version of the Dutch portion of the multilingual C4 corpus. Estimated size of compressed files: {_CONFIGS[name]['estimate']} """ ), ) for name in _CONFIG_NAMES ] BUILDER_CONFIGS += [ Mc4NlCleanedConfig( name=f"{name}{_CONFIG_EN_NL_SUFFIX}", version=datasets.Version("1.0.0"), description=textwrap.dedent( f"""\ A {name} cleaned version of the Dutch and English portion of the multilingual C4 corpus. """ ), ) for name in _CONFIG_NAMES ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), "timestamp": datasets.Value("string"), "url": datasets.Value("string"), } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): data_urls = {} config = _CONFIGS[self.config.name.replace(_CONFIG_EN_NL_SUFFIX, "")] for split in ["train", "validation"]: start_file = config.get("start", 0) if split == "train" else 0 num_files = config.get(split) data_urls[split] = [] for index in range(start_file, start_file + num_files): data_urls[split].append( _DATA_URL_NL.format( split=split, index=index, validation="-validation" if split == "validation" else "", n_shards=4 if split == "validation" else 1024, ) ) if self.config.name.endswith(_CONFIG_EN_NL_SUFFIX): data_urls[split].append( _DATA_URL_EN.format( name=_C4_EN_VARIANT, split=split, index=index, validation="-validation" if split == "validation" else "", n_shards=8 if split == "validation" else 1024, ) ) # Shuffle data in streaming mode, so restarts will not always start with the same data if dl_manager.is_streaming: random.shuffle(data_urls["train"]) train_downloaded_files = dl_manager.download(data_urls["train"]) validation_downloaded_files = dl_manager.download(data_urls["validation"]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files}, ), ] @staticmethod def grouper(iterable, n, fillvalue=None): """Collect data into fixed-length chunks or blocks""" # grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx" args = [iter(iterable)] * n return zip_longest(*args, fillvalue=fillvalue) @staticmethod def gzip_open(filepath): if filepath: return gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") def _generate_examples(self, filepaths): """This function returns the examples in the raw (text) form by iterating on all the files.""" id_ = 0 for files in self.grouper(filepaths, 2, None): logger.info(f"Generating examples from {files}") gzip_iters = [self.gzip_open(file) for file in files if file is not None] for lines in zip(*gzip_iters): for line in lines: example = json.loads(line) yield id_, example id_ += 1