--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-finetuned-minds14-enUS_2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 metrics: - name: Wer type: wer value: 0.33943329397874855 --- # whisper-tiny-finetuned-minds14-enUS_2 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.7508 - Wer Ortho: 0.3356 - Wer: 0.3394 - Cer: 0.2613 - Cer Ortho: 0.2623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | Cer | Cer Ortho | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:---------:| | 0.0136 | 7.14 | 100 | 0.6142 | 0.3362 | 0.3388 | 0.2587 | 0.2614 | | 0.0009 | 14.29 | 200 | 0.6704 | 0.3288 | 0.3300 | 0.2515 | 0.2534 | | 0.0011 | 21.43 | 300 | 0.6858 | 0.3054 | 0.3093 | 0.2363 | 0.2374 | | 0.0005 | 28.57 | 400 | 0.7081 | 0.3455 | 0.3477 | 0.2699 | 0.2711 | | 0.0004 | 35.71 | 500 | 0.7191 | 0.3467 | 0.3501 | 0.2727 | 0.2736 | | 0.0001 | 42.86 | 600 | 0.7337 | 0.3405 | 0.3447 | 0.2652 | 0.2662 | | 0.0001 | 50.0 | 700 | 0.7418 | 0.3393 | 0.3430 | 0.2636 | 0.2645 | | 0.0001 | 57.14 | 800 | 0.7466 | 0.3387 | 0.3424 | 0.2634 | 0.2644 | | 0.0001 | 64.29 | 900 | 0.7496 | 0.3350 | 0.3388 | 0.2604 | 0.2614 | | 0.0001 | 71.43 | 1000 | 0.7508 | 0.3356 | 0.3394 | 0.2613 | 0.2623 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3