--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xls-r-1b-scandinavian-E4-100h-30-epochs-20250124 results: [] --- # wav2vec2-xls-r-1b-scandinavian-E4-100h-30-epochs-20250124 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Wer: 100.0 - Cer: 100.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 6000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:-------:|:-------:| | 1.267 | 0.7819 | 1000 | inf | 47.6367 | 13.5610 | | 0.5584 | 1.5637 | 2000 | inf | 26.4059 | 7.2903 | | 0.4211 | 2.3456 | 3000 | inf | 23.4538 | 6.4409 | | 0.5473 | 3.1274 | 4000 | inf | 21.6233 | 6.0101 | | 0.4631 | 3.9093 | 5000 | inf | 21.4830 | 5.9161 | | 0.2869 | 4.6912 | 6000 | inf | 21.6286 | 6.0356 | | 0.4572 | 5.4730 | 7000 | inf | 22.4768 | 6.2442 | | 0.2378 | 6.2549 | 8000 | inf | 21.7372 | 6.1153 | | 0.3479 | 7.0367 | 9000 | inf | 22.6372 | 6.2812 | | 0.368 | 7.8186 | 10000 | inf | 23.1700 | 6.3923 | | 0.5023 | 8.6005 | 11000 | inf | 22.2996 | 6.2065 | | 0.4695 | 9.3823 | 12000 | inf | 21.2941 | 5.9487 | | 0.0 | 10.1642 | 13000 | nan | 100.0 | 100.0 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0