--- license: agpl-3.0 library: ultralytics tags: - object-detection - pytorch - coco - p2-layer - yolo11 - yolov11 - yolox11-p2 - yolovx11-p2 --- # YOLO11-p2 COCO Pretrained Model This model is a YOLO11-p2 model trained on the COCO dataset, **with P2-P5 output layers.** ## Example Usage ```angular2html from huggingface_hub import hf_hub_download from ultralytics import YOLO from PIL import Image model_path = hf_hub_download("soyeollee/yolo11x-p2-coco", "model.pt") model = YOLO(model_path) image_path = "/path/to/image" output = model(Image.open(image_path)) ``` ## Performance | metric (maxDets=100) | yolov8x
(official) | [yolov8x-p2](https://huggingface.co/soyeollee/yolov8x-p2-coco) | [yolov8x-p26](https://huggingface.co/soyeollee/yolov8x-p26-coco) | yolov11x
(official) | yolo11x-p2
(this repo) | |--------------------------------------------------------|--------------------|----------------------------|------------------------------------------------------------------|---------------------|----------------------------| | AP @[ IoU=0.50:0.95 / area= all ] | **0.540** | **0.541** | **0.544** | **0.546** | **0.553** | | AP @[ IoU=0.50 / area= all ] | 0.710 | 0.712 | 0.713 | 0.716 | 0.722 | | AP @[ IoU=0.75 / area= all ] | 0.588 | 0.590 | 0.593 | 0.595 | 0.606 | | AP @[ IoU=0.50:0.95 / area= small ] | 0.360 | 0.386 | 0.381 | 0.377 | 0.386 | | AP @[ IoU=0.50:0.95 /area=medium ] | 0.594 | 0.586 | 0.586 | 0.597 | 0.595 | | AP @[ IoU=0.50:0.95 / area= large ] | 0.707 | 0.686 | 0.691 | 0.702 | 0.702 |