--- license: apache-2.0 datasets: - tatsu-lab/alpaca --- ## 🍮 🦙 Flan-Alpaca: Instruction Tuning from Humans and Machines 📣 Introducing **Red-Eval** to evaluate the safety of the LLMs using several jailbreaking prompts. With **Red-Eval** one could jailbreak/red-team GPT-4 with a 65.1% attack success rate and ChatGPT could be jailbroken 73% of the time as measured on DangerousQA and HarmfulQA benchmarks. More details are here: [Code](https://github.com/declare-lab/red-instruct) and [Paper](https://arxiv.org/abs/2308.09662). 📣 We developed Flacuna by fine-tuning Vicuna-13B on the Flan collection. Flacuna is better than Vicuna at problem-solving. Access the model here https://huggingface.co/declare-lab/flacuna-13b-v1.0. 📣 Curious to know the performance of 🍮 🦙 **Flan-Alpaca** on large-scale LLM evaluation benchmark, **InstructEval**? Read our paper [https://arxiv.org/pdf/2306.04757.pdf](https://arxiv.org/pdf/2306.04757.pdf). We evaluated more than 10 open-source instruction-tuned LLMs belonging to various LLM families including Pythia, LLaMA, T5, UL2, OPT, and Mosaic. Codes and datasets: [https://github.com/declare-lab/instruct-eval](https://github.com/declare-lab/instruct-eval) 📣 **FLAN-T5** is also useful in text-to-audio generation. Find our work at [https://github.com/declare-lab/tango](https://github.com/declare-lab/tango) if you are interested. Our [repository](https://github.com/declare-lab/flan-alpaca) contains code for extending the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) synthetic instruction tuning to existing instruction-tuned models such as [Flan-T5](https://arxiv.org/abs/2210.11416). We have a [live interactive demo](https://huggingface.co/spaces/joaogante/transformers_streaming) thanks to [Joao Gante](https://huggingface.co/joaogante)! We are also benchmarking many instruction-tuned models at [declare-lab/flan-eval](https://github.com/declare-lab/flan-eval). Our pretrained models are fully available on HuggingFace 🤗 : | Model | Parameters | Instruction Data | Training GPUs | |----------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------| | [Flan-Alpaca-Base](https://huggingface.co/declare-lab/flan-alpaca-base) | 220M | [Flan](https://github.com/google-research/FLAN), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) | 1x A6000 | | [Flan-Alpaca-Large](https://huggingface.co/declare-lab/flan-alpaca-large) | 770M | [Flan](https://github.com/google-research/FLAN), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) | 1x A6000 | | [Flan-Alpaca-XL](https://huggingface.co/declare-lab/flan-alpaca-xl) | 3B | [Flan](https://github.com/google-research/FLAN), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) | 1x A6000 | | [Flan-Alpaca-XXL](https://huggingface.co/declare-lab/flan-alpaca-xxl) | 11B | [Flan](https://github.com/google-research/FLAN), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) | 4x A6000 (FSDP) | | [Flan-GPT4All-XL](https://huggingface.co/declare-lab/flan-gpt4all-xl) | 3B | [Flan](https://github.com/google-research/FLAN), [GPT4All](https://github.com/nomic-ai/gpt4all) | 1x A6000 | | [Flan-ShareGPT-XL](https://huggingface.co/declare-lab/flan-sharegpt-xl) | 3B | [Flan](https://github.com/google-research/FLAN), [ShareGPT](https://github.com/domeccleston/sharegpt)/[Vicuna](https://github.com/lm-sys/FastChat) | 1x A6000 | | [Flan-Alpaca-GPT4-XL*](https://huggingface.co/declare-lab/flan-alpaca-gpt4-xl) | 3B | [Flan](https://github.com/google-research/FLAN), [GPT4-Alpaca](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM) | 1x A6000 | *recommended for better performance ### Why? [Alpaca](https://crfm.stanford.edu/2023/03/13/alpaca.html) represents an exciting new direction to approximate the performance of large language models (LLMs) like ChatGPT cheaply and easily. Concretely, they leverage an LLM such as GPT-3 to generate instructions as synthetic training data. The synthetic data which covers more than 50k tasks can then be used to finetune a smaller model. However, the original implementation is less accessible due to licensing constraints of the underlying [LLaMA](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/) model. Furthermore, users have noted [potential noise](https://github.com/tloen/alpaca-lora/issues/65) in the synthetic dataset. Hence, it may be better to explore a fully accessible model that is already trained on high-quality (but less diverse) instructions such as [Flan-T5](https://arxiv.org/abs/2210.11416). ### Usage ``` from transformers import pipeline prompt = "Write an email about an alpaca that likes flan" model = pipeline(model="declare-lab/flan-alpaca-gpt4-xl") model(prompt, max_length=128, do_sample=True) # Dear AlpacaFriend, # My name is Alpaca and I'm 10 years old. # I'm excited to announce that I'm a big fan of flan! # We like to eat it as a snack and I believe that it can help with our overall growth. # I'd love to hear your feedback on this idea. # Have a great day! # Best, AL Paca ```