--- language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Small ar results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: ar split: test args: ar metrics: - name: Wer type: wer value: 59.8927599493439 pipeline_tag: automatic-speech-recognition --- # Whisper Small ar This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4878 - Wer: 59.8928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2097 | 1.6474 | 1000 | 0.3666 | 56.7025 | | 0.0899 | 3.2949 | 2000 | 0.3687 | 61.4003 | | 0.0516 | 4.9423 | 3000 | 0.3922 | 62.3124 | | 0.0169 | 6.5898 | 4000 | 0.4581 | 58.6587 | | 0.0072 | 8.2372 | 5000 | 0.4878 | 59.8928 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1