--- language: en license: cc-by-4.0 datasets: - squad_v2 base_model: roberta-large model-index: - name: deepset/roberta-large-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 85.168 name: Exact Match - type: f1 value: 88.349 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - type: exact_match value: 87.162 name: Exact Match - type: f1 value: 93.603 name: F1 - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - type: exact_match value: 35.900 name: Exact Match - type: f1 value: 48.923 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad_adversarial type: squad_adversarial config: AddOneSent split: validation metrics: - type: exact_match value: 81.142 name: Exact Match - type: f1 value: 87.099 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts amazon type: squadshifts config: amazon split: test metrics: - type: exact_match value: 72.453 name: Exact Match - type: f1 value: 86.325 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts new_wiki type: squadshifts config: new_wiki split: test metrics: - type: exact_match value: 82.338 name: Exact Match - type: f1 value: 91.974 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts nyt type: squadshifts config: nyt split: test metrics: - type: exact_match value: 84.352 name: Exact Match - type: f1 value: 92.645 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts reddit type: squadshifts config: reddit split: test metrics: - type: exact_match value: 74.722 name: Exact Match - type: f1 value: 86.860 name: F1 --- # roberta-large for QA This is the [roberta-large](https://huggingface.co/roberta-large) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering. ## Overview **Language model:** roberta-large **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system) **Infrastructure**: 4x Tesla v100 ## Hyperparameters ``` base_LM_model = "roberta-large" ``` ## Using a distilled model instead Please note that we have also released a distilled version of this model called [deepset/roberta-base-squad2-distilled](https://huggingface.co/deepset/roberta-base-squad2-distilled). The distilled model has a comparable prediction quality and runs at twice the speed of the large model. ## Usage ### In Haystack Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="deepset/roberta-large-squad2") # or reader = TransformersReader(model_name_or_path="deepset/roberta-large-squad2",tokenizer="deepset/roberta-large-squad2") ``` For a complete example of ``roberta-large-squad2`` being used for Question Answering, check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai/tutorials/first-qa-system) ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/roberta-large-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors **Branden Chan:** branden.chan@deepset.ai **Timo Möller:** timo.moeller@deepset.ai **Malte Pietsch:** malte.pietsch@deepset.ai **Tanay Soni:** tanay.soni@deepset.ai ## About us
[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. Some of our other work: - [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2) - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) ## Get in touch and join the Haystack community

For more info on Haystack, visit our GitHub repo and Documentation. We also have a Discord community open to everyone!

[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)