--- license: apache-2.0 --- # Depth Anything V2 for Metric Depth Estimation # Pre-trained Models We provide **six metric depth models** of three scales for indoor and outdoor scenes, respectively. | Base Model | Params | Indoor (Hypersim) | Outdoor (Virtual KITTI 2) | |:-|-:|:-:|:-:| | Depth-Anything-V2-Small | 24.8M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Hypersim-Small/resolve/main/depth_anything_v2_metric_hypersim_vits.pth?download=true) | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-VKITTI-Small/resolve/main/depth_anything_v2_metric_vkitti_vits.pth?download=true) | | Depth-Anything-V2-Base | 97.5M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Hypersim-Base/resolve/main/depth_anything_v2_metric_hypersim_vitb.pth?download=true) | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-VKITTI-Base/resolve/main/depth_anything_v2_metric_vkitti_vitb.pth?download=true) | | Depth-Anything-V2-Large | 335.3M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Hypersim-Large/resolve/main/depth_anything_v2_metric_hypersim_vitl.pth?download=true) | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-VKITTI-Large/resolve/main/depth_anything_v2_metric_vkitti_vitl.pth?download=true) | *We recommend to first try our larger models (if computational cost is affordable) and the indoor version.* ## Usage ### Prepraration ```bash git clone https://github.com/DepthAnything/Depth-Anything-V2 cd Depth-Anything-V2/metric_depth pip install -r requirements.txt ``` Download the checkpoints listed [here](#pre-trained-models) and put them under the `checkpoints` directory. ### Use our models ```python import cv2 import torch from depth_anything_v2.dpt import DepthAnythingV2 model_configs = { 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]} } encoder = 'vitl' # or 'vits', 'vitb' dataset = 'hypersim' # 'hypersim' for indoor model, 'vkitti' for outdoor model max_depth = 20 # 20 for indoor model, 80 for outdoor model model = DepthAnythingV2(**{**model_configs[encoder], 'max_depth': max_depth}) model.load_state_dict(torch.load(f'checkpoints/depth_anything_v2_metric_{dataset}_{encoder}.pth', map_location='cpu')) model.eval() raw_img = cv2.imread('your/image/path') depth = model.infer_image(raw_img) # HxW depth map in meters in numpy ``` ### Running script on images Here, we take the `vitl` encoder as an example. You can also use `vitb` or `vits` encoders. ```bash # indoor scenes python run.py \ --encoder vitl \ --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \ --max-depth 20 \ --img-path --outdir [--input-size ] [--save-numpy] # outdoor scenes python run.py \ --encoder vitl \ --load-from checkpoints/depth_anything_v2_metric_vkitti_vitl.pth \ --max-depth 80 \ --img-path --outdir [--input-size ] [--save-numpy] ``` ### Project 2D images to point clouds: ```bash python depth_to_pointcloud.py \ --encoder vitl \ --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \ --max-depth 20 \ --img-path --outdir ``` ### Reproduce training Please first prepare the [Hypersim](https://github.com/apple/ml-hypersim) and [Virtual KITTI 2](https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/) datasets. Then: ```bash bash dist_train.sh ``` ## Citation If you find this project useful, please consider citing: ```bibtex @article{depth_anything_v2, title={Depth Anything V2}, author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang}, journal={arXiv:2406.09414}, year={2024} } @inproceedings{depth_anything_v1, title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data}, author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang}, booktitle={CVPR}, year={2024} } ```