--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: roberta-base_gpt-4o-2024-05-13_gpt-4o-mini-2024-07-18_20240913_044355 results: [] --- # roberta-base_gpt-4o-2024-05-13_gpt-4o-mini-2024-07-18_20240913_044355 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4503 - Accuracy: 0.8026 - F1: 0.8832 - Precision: 0.8292 - Recall: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 420 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4781 | 1.0 | 871 | 0.4503 | 0.8026 | 0.8832 | 0.8292 | 0.9448 | | 0.4526 | 2.0 | 1742 | 0.4536 | 0.8048 | 0.8822 | 0.8434 | 0.9248 | | 0.424 | 3.0 | 2613 | 0.4529 | 0.8052 | 0.8837 | 0.8362 | 0.9370 | | 0.3789 | 4.0 | 3484 | 0.4970 | 0.8029 | 0.8826 | 0.8336 | 0.9379 | | 0.3275 | 5.0 | 4355 | 0.5587 | 0.7945 | 0.8777 | 0.8286 | 0.9330 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1