--- license: mit base_model: microsoft/deberta-v2-xxlarge tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: deberta-v2-xxl-imdb-v0.1 results: [] --- # deberta-v2-xxl-imdb-v0.1 This model is a fine-tuned version of [microsoft/deberta-v2-xxlarge](https://huggingface.co/microsoft/deberta-v2-xxlarge) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1684 - Accuracy: 0.9708 - F1: 0.9710 - Precision: 0.9669 - Recall: 0.9750 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0607 | 1.0 | 6250 | 0.2211 | 0.9616 | 0.9611 | 0.9738 | 0.9487 | | 0.3056 | 2.0 | 12500 | 0.1855 | 0.9662 | 0.9658 | 0.9770 | 0.9548 | | 0.0502 | 3.0 | 18750 | 0.1790 | 0.9696 | 0.9697 | 0.9668 | 0.9726 | | 0.2397 | 4.0 | 25000 | 0.1741 | 0.9705 | 0.9707 | 0.9634 | 0.9782 | | 0.1207 | 5.0 | 31250 | 0.1662 | 0.9708 | 0.9708 | 0.9713 | 0.9702 | | 0.0637 | 6.0 | 37500 | 0.1718 | 0.9707 | 0.9707 | 0.9710 | 0.9703 | | 0.3034 | 7.0 | 43750 | 0.1687 | 0.9706 | 0.9707 | 0.9670 | 0.9745 | | 0.0013 | 8.0 | 50000 | 0.1683 | 0.9708 | 0.9709 | 0.9668 | 0.9751 | | 0.0543 | 9.0 | 56250 | 0.1683 | 0.9707 | 0.9708 | 0.9667 | 0.9750 | | 0.1015 | 10.0 | 62500 | 0.1684 | 0.9708 | 0.9710 | 0.9669 | 0.9750 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2